微分学<5>——L‘Hopital法则

L’Hopital法则

待定型极限求法

待定型的种类

以"0"代表无穷小量," ∞ \infty "代表无穷大量,以下类型均为待定型:
(1) 0 0 \frac{0}{0} 00
(2) ∞ ∞ \frac{\infty }{\infty }
(3) ∞ 0 \infty ^{0} 0
(4) 1 ∞ 1^{\infty } 1
(5) 0 0 0^{0} 00
(6) ∞ − ∞ \infty -\infty
(7) 0 ⋅ ∞ 0\cdot \infty 0
(8)……

定理5.1 L’Hopital法则

f ( x ) f\left ( x \right ) f(x), g ( x ) g\left ( x \right ) g(x)在去心邻域 U ˚ ( x 0 , δ ) ( δ > 0 ) \mathring{U}\left ( x_{0},\delta \right )(\delta>0) U˚(x0,δ)(δ>0)上可导, f ( x ) f\left ( x \right ) f(x), g ( x ) g\left (x \right ) g(x) U ˚ ( x 0 , δ ) ( δ > 0 ) \mathring{U}\left ( x_{0},\delta \right )(\delta>0) U˚(x0,δ)(δ>0)上可导,且 g ′ ( x ) ≠ 0 g^{\prime }\left ( x \right )\neq 0 g(x)=0,若此时满足以下条件任意之一:
(1) lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 g ( x ) = 0 \lim _{x\to x_{0} }f\left ( x \right )=\lim _{x\to x_{0} }g\left ( x \right )=0 limxx0f(x)=limxx0g(x)=0
(2) lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 g ( x ) = ∞ \lim _{x\to x_{0} }f\left ( x \right )=\lim _{x\to x_{0} }g\left ( x \right )=\infty limxx0f(x)=limxx0g(x)=
lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) = A \lim _{x\to x_{0} }\frac{f^{\prime } \left ( x \right )}{g^{\prime } \left ( x \right )}=A limxx0g(x)f(x)=A,则有 lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) = A \lim _{x\to x_{0} }\frac{f\left ( x \right )}{g\left ( x \right )} =\lim _{x\to x_{0} }\frac{f^{\prime } \left ( x \right )}{g^{\prime }\left ( x \right )}=A limxx0g(x)f(x)=limxx0g(x)f(x)=A
L’Hopital法则同样适用于 x → x 0 + x\to x_{0}^{+} xx0+, x → x 0 − x\to x_{0}^{-} xx0, x → + ∞ x\to +\infty x+, x → − ∞ x\to -\infty x, x → ∞ x\to \infty x以及 lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) = ∞ \lim _{x\to x_{0} }\frac{f\left ( x \right )}{g\left ( x \right )} =\lim _{x\to x_{0} }\frac{f^{\prime } \left ( x \right )}{g^{\prime }\left ( x \right )}=\infty limxx0g(x)f(x)=limxx0g(x)f(x)=, − ∞ -\infty , + ∞ +\infty +的特殊条件。

(1)
不妨设 lim ⁡ x → + ∞ f ( x ) = lim ⁡ x → + ∞ g ( x ) = 0 \lim _{x\to +\infty}f\left ( x \right )=\lim _{x\to +\infty}g\left ( x \right )=0 limx+f(x)=limx+g(x)=0,
<1> x → x 0 + x\to x_{0}^{+} xx0+
为保证 f ( x ) f\left ( x \right ) f(x), g ( x ) g\left ( x \right ) g(x)的连续性,定义 f ( x 0 ) = g ( x 0 ) = 0 f\left ( x_{0} \right )=g\left ( x_{0} \right ) =0 f(x0)=g(x0)=0
由极限定义, ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ x ∈ ( x 0 , x 0 + δ ) \forall x \in \left ( x_{0},x_{0}+\delta \right ) x(x0,x0+δ), ∣ f ′ ( x ) g ′ ( x ) − A ∣ < ε \left | \frac{f^{\prime }\left ( x \right ) }{g^{\prime } \left ( x \right ) } -A \right | < \varepsilon g(x)f(x)A <ε,
根据Cauchy中值定理, ∃ ξ ∈ ( x 0 , x ) \exists \xi \in \left ( x_{0},x \right ) ξ(x0,x): f ′ ( ξ ) g ′ ( ξ ) = f ( x ) − f ( x 0 ) g ( x ) − g ( x 0 ) = f ( x ) g ( x ) \frac{f^{\prime } \left ( \xi \right ) }{g^{\prime }\left ( \xi \right ) }=\frac{f\left ( x \right )-f\left ( x_{0} \right ) }{g\left ( x \right ) -g\left ( x_{0} \right ) }=\frac{f \left ( x \right )}{g\left ( x \right )} g(ξ)f(ξ)=g(x)g(x0)f(x)f(x0)=g(x)f(x)
由于当 x → x 0 + x\to x_{0}^{+} xx0+时,随之 ξ → x 0 + \xi \to x_{0}^{+} ξx0+,
所以由极限定义, ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ ξ ∈ ( x 0 , x 0 + δ ) \forall \xi \in \left ( x_{0},x_{0}+\delta \right ) ξ(x0,x0+δ), ∣ f ′ ( ξ ) g ′ ( ξ ) − A ∣ < ε \left | \frac{f^{\prime }\left (\xi \right ) }{g^{\prime } \left ( \xi \right ) } -A \right | < \varepsilon g(ξ)f(ξ)A <ε,即 lim ⁡ x → x 0 f ( x ) g ( x ) = lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) = A \lim _{x\to x_{0} }\frac{f\left ( x \right )}{g\left ( x \right )} =\lim _{x\to x_{0} }\frac{f^{\prime } \left ( x \right )}{g^{\prime }\left ( x \right )}=A limxx0g(x)f(x)=limxx0g(x)f(x)=A
<2> x → ∞ x\to \infty x
t = x − 1 t=x^{-1} t=x1, x → + ∞ ⇔ t → 0 + x\to +\infty \Leftrightarrow t\to 0^{+} x+t0+,
此时条件变形为 lim ⁡ t → 0 + f ( t − 1 ) = lim ⁡ t → 0 + g ( t − 1 ) = 0 \lim _{t\to 0^{+} }f\left ( t^{-1} \right )=\lim _{t\to 0^{+} }g\left ( t^{-1} \right )=0 limt0+f(t1)=limt0+g(t1)=0,且 lim ⁡ t → 0 + f ′ ( t − 1 ) g ′ ( t − 1 ) = A \lim _{t\to 0^{+} }\frac{f^{\prime } \left ( t^{-1} \right )}{g^{\prime } \left ( t^{-1} \right )}=A limt0+g(t1)f(t1)=A,
根据定理2.1, f ( t − 1 ) f\left ( t^{-1} \right ) f(t1), g ( t − 1 ) g\left ( t^{-1} \right ) g(t1)在去心邻域 U ˚ ( x 0 , δ ) ( δ > 0 ) \mathring{U}\left ( x_{0},\delta \right )(\delta>0) U˚(x0,δ)(δ>0)上可导,且 g ′ ( t − 1 ) ≠ 0 g^{\prime }\left ( t^{-1} \right )\neq 0 g(t1)=0,
直接应用<1>的结论,
lim ⁡ x → + ∞ f ( x ) g ( x ) = lim ⁡ t → 0 + f ( t − 1 ) g ( t − 1 ) = lim ⁡ t → 0 + [ f ( t − 1 ) ] ′ [ g ( t − 1 ) ] ′ = lim ⁡ t → 0 + − t − 2 f ′ ( t − 1 ) − t − 2 g ′ ( t − 1 ) = lim ⁡ t → 0 + f ′ ( t − 1 ) g ′ ( t − 1 ) = lim ⁡ x → + ∞ f ′ ( x ) g ′ ( x ) \begin{array}{l} &\lim _{x\to +\infty }\frac{f\left ( x \right ) }{g\left ( x \right ) } \\ =&\lim _{t\to 0^{+} } \frac{f\left ( t^{-1} \right ) }{g\left ( t^{-1} \right ) } \\ =&\lim _{t\to 0^{+} }\frac{\left [ f\left ( t^{-1} \right ) \right ]^{\prime } }{\left [ g\left ( t^{-1} \right ) \right ]^{\prime } } \\ =& \lim _{t\to 0^{+} }\frac{-t^{-2}f^{\prime }\left ( t^{-1} \right ) }{-t^{-2}g^{\prime }\left ( t^{-1} \right )}\\ =& \lim _{t\to 0^{+} }\frac{f^{\prime }\left ( t^{-1} \right )}{g^{\prime }\left ( t^{-1} \right )} \\ =&\lim _{x\to +\infty }\frac{f^{\prime }\left ( x \right ) }{g^{\prime }\left ( x \right ) } \end{array} =====limx+g(x)f(x)limt0+g(t1)f(t1)limt0+[g(t1)][f(t1)]limt0+t2g(t1)t2f(t1)limt0+g(t1)f(t1)limx+g(x)f(x)
(2)
不妨设 lim ⁡ x → x 0 + f ( x ) = lim ⁡ x → x 0 + g ( x ) = + ∞ \lim _{x\to x_{0}^{+} }f\left ( x \right )=\lim _{x\to x_{0}^{+} }g\left ( x \right )=+\infty limxx0+f(x)=limxx0+g(x)=+
<1> lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) = A \lim _{x\to x_{0} }\frac{f^{\prime } \left ( x \right )}{g^{\prime } \left ( x \right )}=A limxx0g(x)f(x)=A
由极限定义, ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ ρ > 0 \exists \rho>0 ρ>0: ∀ x ∈ ( x 0 , x 0 + ρ ) \forall x\in \left ( x_{0},x_{0}+\rho \right ) x(x0,x0+ρ), ∣ f ′ ( x ) g ′ ( x ) − A ∣ < ε 2 \left | \frac{f^{\prime }\left ( x \right ) }{g^{\prime }\left ( x \right ) }-A \right |<\frac{\varepsilon }{2} g(x)f(x)A <2ε(1),
根据Cauchy中值定理, ∃ ξ ∈ ( x , x 0 + ρ ) \exists \xi \in \left ( x ,x_{0}+\rho \right ) ξ(x,x0+ρ): f ′ ( ξ ) g ′ ( ξ ) = f ( x ) − f ( x 0 + ρ ) g ( x ) − g ( x 0 + ρ ) \frac{f^{\prime }\left ( \xi \right ) }{g^{\prime }\left ( \xi \right ) }=\frac{f\left ( x \right )-f\left ( x_{0} +\rho \right ) }{g\left ( x \right )-g \left ( x_{0} +\rho \right ) } g(ξ)f(ξ)=g(x)g(x0+ρ)f(x)f(x0+ρ),
ξ \xi ξ代换(1)中的 x x x,可得 A − ε 2 < f ′ ( ξ ) g ′ ( ξ ) < A + ε 2 A-\frac{\varepsilon }{2}<\frac{f^{\prime }\left ( \xi \right ) }{g^{\prime }\left ( \xi \right ) } <A+\frac{\varepsilon }{2} A2ε<g(ξ)f(ξ)<A+2ε(2)。
又有
f ′ ( ξ ) g ′ ( ξ ) = f ( x ) − f ( x 0 + ρ ) g ( x ) − g ( x 0 + ρ ) = g ( x ) g ( x ) − g ( x 0 + ρ ) ( f ( x ) − f ( x 0 + ρ ) g ( x ) ) = g ( x ) g ( x ) − g ( x 0 + ρ ) ( f ( x ) g ( x ) − f ( x 0 + ρ ) g ( x ) ) \begin{array}{l} &\frac{f^{\prime }\left ( \xi \right ) }{g^{\prime }\left ( \xi \right ) } \\ =& \frac{f\left ( x \right )-f\left ( x_{0} +\rho \right ) }{g\left ( x \right )-g \left ( x_{0} +\rho \right ) } \\ =& \frac{g\left ( x \right ) }{ g\left ( x \right )-g \left ( x_{0} +\rho \right )}\left ( \frac{f\left ( x \right )-f \left ( x_{0} +\rho \right )}{g\left ( x \right ) } \right ) \\ =& \frac{g\left ( x \right ) }{ g\left ( x \right )-g \left ( x_{0} +\rho \right )}\left ( \frac{f\left ( x \right ) }{g\left ( x \right ) }-\frac{f \left ( x_{0} +\rho \right )}{g\left ( x \right ) } \right ) \\ \end{array} ===g(ξ)f(ξ)g(x)g(x0+ρ)f(x)f(x0+ρ)g(x)g(x0+ρ)g(x)(g(x)f(x)f(x0+ρ))g(x)g(x0+ρ)g(x)(g(x)f(x)g(x)f(x0+ρ))
(2)变形为 A − ε 2 < g ( x ) g ( x ) − g ( x 0 + ρ ) ( f ( x ) g ( x ) − f ( x 0 + ρ ) g ( x ) ) < A + ε 2 A-\frac{\varepsilon }{2}< \frac{g\left ( x \right ) }{ g\left ( x \right )-g \left ( x_{0} +\rho \right )}\left ( \frac{f\left ( x \right ) }{g\left ( x \right ) }-\frac{f \left ( x_{0} +\rho \right )}{g\left ( x \right ) } \right ) <A+\frac{\varepsilon }{2} A2ε<g(x)g(x0+ρ)g(x)(g(x)f(x)g(x)f(x0+ρ))<A+2ε(3),
根据数列极限<2>的定理2.1, lim ⁡ x → x 0 + g ( x ) − g ( x 0 + ρ ) g ( x ) = lim ⁡ x → x 0 + ( 1 − g ( x 0 + ρ ) g ( x ) ) = 1 \lim_{x\to x_{0}^{+} } \frac{g\left ( x \right )-g \left ( x_{0} +\rho \right )}{ g\left ( x \right ) }=\lim _{x\to x_{0}^{+} } \left ( 1-\frac{g\left ( x_{0}+\rho \right ) }{g\left ( x \right ) } \right )=1 limxx0+g(x)g(x)g(x0+ρ)=limxx0+(1g(x)g(x0+ρ))=1,
根据函数极限的局部保序性, ∃ 0 < η < ρ \exists 0<\eta <\rho ∃0<η<ρ: ∀ x ( 0 < x − x 0 < η ) \forall x\left ( 0<x-x_{0}<\eta \right ) x(0<xx0<η), g ( x ) − g ( x 0 + ρ ) g ( x ) > 0 \frac{g\left ( x \right )-g \left ( x_{0} +\rho \right )}{ g\left ( x \right ) } >0 g(x)g(x)g(x0+ρ)>0;
将(3)两侧同乘 g ( x ) − g ( x 0 + ρ ) g ( x ) > 0 \frac{g\left ( x \right )-g \left ( x_{0} +\rho \right )}{ g\left ( x \right ) } >0 g(x)g(x)g(x0+ρ)>0,并加上 f ( x 0 + ρ ) g ( x ) \frac{f \left ( x_{0} +\rho \right )}{g\left ( x \right ) } g(x)f(x0+ρ),可得 ( A − ε 2 ) g ( x ) − g ( x 0 + ρ ) g ( x ) + f ( x 0 + ρ ) g ( x ) < f ( x ) g ( x ) < ( A + ε 2 ) g ( x ) − g ( x 0 + ρ ) g ( x ) + f ( x 0 + ρ ) g ( x ) \left ( A-\frac{\varepsilon }{2} \right )\frac{g\left ( x \right )-g \left ( x_{0} +\rho \right )}{ g\left ( x \right ) }+\frac{f \left ( x_{0} +\rho \right )}{g\left ( x \right ) }<\frac{f\left ( x \right ) }{g\left ( x \right ) }<\left ( A+\frac{\varepsilon }{2} \right )\frac{g\left ( x \right )-g \left ( x_{0} +\rho \right )}{ g\left ( x \right ) }+\frac{f \left ( x_{0} +\rho \right )}{g\left ( x \right ) } (A2ε)g(x)g(x)g(x0+ρ)+g(x)f(x0+ρ)<g(x)f(x)<(A+2ε)g(x)g(x)g(x0+ρ)+g(x)f(x0+ρ),
又有 lim ⁡ x → x 0 + [ ( A − ε 2 ) g ( x ) − g ( x 0 + ρ ) g ( x ) + f ( x 0 + ρ ) g ( x ) ] = A − ε 2 \lim_{x\to x_{0}^{+} } \left [ \left ( A-\frac{\varepsilon }{2} \right )\frac{g\left ( x \right )-g \left ( x_{0} +\rho \right )}{ g\left ( x \right ) }+\frac{f \left ( x_{0} +\rho \right )}{g\left ( x \right ) } \right ]=A-\frac{\varepsilon }{2} limxx0+[(A2ε)g(x)g(x)g(x0+ρ)+g(x)f(x0+ρ)]=A2ε,
引用函数极限的局部保号性, ∃ 0 < δ < η < ρ \exists 0<\delta <\eta <\rho ∃0<δ<η<ρ: ∀ x ( 0 < x − x 0 < δ ) \forall x\left ( 0<x-x_{0}<\delta \right ) x(0<xx0<δ), A − ε 2 ≤ f ( x ) g ( x ) A-\frac{\varepsilon }{2}\le \frac{f\left ( x \right ) }{g\left ( x \right ) } A2εg(x)f(x);
同理, ∃ 0 < δ < η < ρ \exists 0<\delta <\eta <\rho ∃0<δ<η<ρ: ∀ x ( 0 < x − x 0 < δ ) \forall x\left ( 0<x-x_{0}<\delta \right ) x(0<xx0<δ), f ( x ) g ( x ) ≤ A + ε 2 \frac{f\left ( x \right ) }{g\left ( x \right ) }\le A+\frac{\varepsilon }{2} g(x)f(x)A+2ε,
综上所述, ∀ ε > 0 , ∃ δ > 0 : ∀ x ( 0 < x − x 0 < δ ) , A − ε < A − ε 2 ≤ f ( x ) g ( x ) ≤ A + ε 2 < A + ε \forall \varepsilon >0,\exists \delta >0:\forall x\left ( 0<x-x_{0}<\delta \right ),A-\varepsilon < A-\frac{\varepsilon }{2}\le \frac{f\left ( x \right ) }{g\left ( x \right ) }\le A+\frac{\varepsilon }{2}<A+\varepsilon ε>0,δ>0:x(0<xx0<δ),Aε<A2εg(x)f(x)A+2ε<A+ε,即 lim ⁡ x → x 0 + f ( x ) g ( x ) = A \lim_{x\to x_{0}^{+} }\frac{f\left ( x \right ) }{g\left ( x \right ) }=A limxx0+g(x)f(x)=A
<2> lim ⁡ x → x 0 f ′ ( x ) g ′ ( x ) = ∞ \lim _{x\to x_{0} }\frac{f^{\prime } \left ( x \right )}{g^{\prime } \left ( x \right )}=\infty limxx0g(x)f(x)=
由无穷大量定义, ∀ G > 0 \forall G >0 G>0, ∃ ρ > 0 \exists \rho>0 ρ>0: ∀ x ∈ ( x 0 , x 0 + ρ ) \forall x\in \left ( x_{0},x_{0}+\rho \right ) x(x0,x0+ρ), ∣ f ′ ( x ) g ′ ( x ) − A ∣ > 2 G \left | \frac{f^{\prime }\left ( x \right ) }{g^{\prime }\left ( x \right ) }-A \right |>2G g(x)f(x)A >2G(1),
根据Cauchy中值定理, ∃ ξ ∈ ( x , x 0 + ρ ) \exists \xi \in \left ( x ,x_{0}+\rho \right ) ξ(x,x0+ρ): f ′ ( ξ ) g ′ ( ξ ) = f ( x ) − f ( x 0 + ρ ) g ( x ) − g ( x 0 + ρ ) \frac{f^{\prime }\left ( \xi \right ) }{g^{\prime }\left ( \xi \right ) }=\frac{f\left ( x \right )-f\left ( x_{0} +\rho \right ) }{g\left ( x \right )-g \left ( x_{0} +\rho \right ) } g(ξ)f(ξ)=g(x)g(x0+ρ)f(x)f(x0+ρ),
ξ \xi ξ代换(1)中的 x x x,可得 f ′ ( ξ ) g ′ ( ξ ) > 2 G \frac{f^{\prime }\left ( \xi \right ) }{g^{\prime }\left ( \xi \right ) } >2G g(ξ)f(ξ)>2G(2)。
又有
f ′ ( ξ ) g ′ ( ξ ) = f ( x ) − f ( x 0 + ρ ) g ( x ) − g ( x 0 + ρ ) = g ( x ) g ( x ) − g ( x 0 + ρ ) ( f ( x ) − f ( x 0 + ρ ) g ( x ) ) = g ( x ) g ( x ) − g ( x 0 + ρ ) ( f ( x ) g ( x ) − f ( x 0 + ρ ) g ( x ) ) \begin{array}{l} &\frac{f^{\prime }\left ( \xi \right ) }{g^{\prime }\left ( \xi \right ) } \\ =& \frac{f\left ( x \right )-f\left ( x_{0} +\rho \right ) }{g\left ( x \right )-g \left ( x_{0} +\rho \right ) } \\ =& \frac{g\left ( x \right ) }{ g\left ( x \right )-g \left ( x_{0} +\rho \right )}\left ( \frac{f\left ( x \right )-f \left ( x_{0} +\rho \right )}{g\left ( x \right ) } \right ) \\ =& \frac{g\left ( x \right ) }{ g\left ( x \right )-g \left ( x_{0} +\rho \right )}\left ( \frac{f\left ( x \right ) }{g\left ( x \right ) }-\frac{f \left ( x_{0} +\rho \right )}{g\left ( x \right ) } \right ) \\ \end{array} ===g(ξ)f(ξ)g(x)g(x0+ρ)f(x)f(x0+ρ)g(x)g(x0+ρ)g(x)(g(x)f(x)f(x0+ρ))g(x)g(x0+ρ)g(x)(g(x)f(x)g(x)f(x0+ρ))
(2)变形为 g ( x ) g ( x ) − g ( x 0 + ρ ) ( f ( x ) g ( x ) − f ( x 0 + ρ ) g ( x ) ) > 2 G \frac{g\left ( x \right ) }{ g\left ( x \right )-g \left ( x_{0} +\rho \right )}\left ( \frac{f\left ( x \right ) }{g\left ( x \right ) }-\frac{f \left ( x_{0} +\rho \right )}{g\left ( x \right ) } \right ) >2G g(x)g(x0+ρ)g(x)(g(x)f(x)g(x)f(x0+ρ))>2G(3),
根据数列极限<2>的定理2.1, lim ⁡ x → x 0 + g ( x ) − g ( x 0 + ρ ) g ( x ) = lim ⁡ x → x 0 + ( 1 − g ( x 0 + ρ ) g ( x ) ) = 1 \lim_{x\to x_{0}^{+} } \frac{g\left ( x \right )-g \left ( x_{0} +\rho \right )}{ g\left ( x \right ) }=\lim _{x\to x_{0}^{+} } \left ( 1-\frac{g\left ( x_{0}+\rho \right ) }{g\left ( x \right ) } \right )=1 limxx0+g(x)g(x)g(x0+ρ)=limxx0+(1g(x)g(x0+ρ))=1,
根据函数极限的局部保序性, ∃ 0 < η < ρ \exists 0<\eta <\rho ∃0<η<ρ: ∀ x ( 0 < x − x 0 < η ) \forall x\left ( 0<x-x_{0}<\eta \right ) x(0<xx0<η), g ( x ) − g ( x 0 + ρ ) g ( x ) > 0 \frac{g\left ( x \right )-g \left ( x_{0} +\rho \right )}{ g\left ( x \right ) } >0 g(x)g(x)g(x0+ρ)>0;
将(3)两侧同乘 g ( x ) − g ( x 0 + ρ ) g ( x ) > 0 \frac{g\left ( x \right )-g \left ( x_{0} +\rho \right )}{ g\left ( x \right ) } >0 g(x)g(x)g(x0+ρ)>0,并加上 f ( x 0 + ρ ) g ( x ) \frac{f \left ( x_{0} +\rho \right )}{g\left ( x \right ) } g(x)f(x0+ρ),可得 f ( x ) g ( x ) > 2 G ( g ( x ) − g ( x 0 + ρ ) g ( x ) ) + f ( x 0 + ρ ) g ( x ) \frac{f\left ( x \right ) }{g\left ( x \right )}>2G\left ( \frac{g\left ( x \right )-g \left ( x_{0} +\rho \right )}{ g\left ( x \right ) } \right )+\frac{f \left ( x_{0} +\rho \right )}{g\left ( x \right ) } g(x)f(x)>2G(g(x)g(x)g(x0+ρ))+g(x)f(x0+ρ),
引用函数极限的局部保号性, ∃ 0 < δ < η < ρ \exists 0<\delta <\eta <\rho ∃0<δ<η<ρ: ∀ x ( 0 < x − x 0 < δ ) \forall x\left ( 0<x-x_{0}<\delta \right ) x(0<xx0<δ), f ( x ) g ( x ) ≥ 2 G \frac{f\left ( x \right ) }{g\left ( x \right ) }\ge 2G g(x)f(x)2G;
综上所述, ∀ G > 0 , ∃ δ > 0 : ∀ x ( 0 < x − x 0 < δ ) , f ( x ) g ( x ) ≥ 2 G > G \forall G >0,\exists \delta >0:\forall x\left ( 0<x-x_{0}<\delta \right ),\frac{f\left ( x \right ) }{g\left ( x \right ) }\ge 2G>G G>0,δ>0:x(0<xx0<δ),g(x)f(x)2G>G

  • 14
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值