【智能制造-19】关节空间运动和笛卡尔空间运动

关节空间运动(Joint Space Motion)和笛卡尔空间运动(Cartesian Space Motion)
在这里插入图片描述
关节空间运动是指机器人按其关节角度变化来控制运动。在关节空间中,每个关节的角度由单独的坐标轴表示,机器人的位置和姿态由所有关节角度的组合决定。
笛卡尔空间运动是指机器人在三维空间中的位置和姿态由笛卡尔坐标系中的点来表示。通常控制末端执行器的运动轨迹,使其沿着期望的路径运动。

关节空间运动过程

  1. 目标位置设定:
    确定末端执行器的目标位置和姿态(例如在笛卡尔坐标系中的位置)。
  2. 逆运动学计算:
    使用逆运动学算法计算出每个关节的角度,使末端执行器达到目标位置和姿态。
  3. 关节角度控制:
    将计算得到的关节角度作为目标,通过关节控制器驱动每个关节运动到指定角度。
  4. 运动控制
    通过关节控制器驱动每个关节沿规划路径运动,实时监控和调整关节角度。
    以下是一个简单的示例代码,展示了关节空间运动的基本过程:
# 示例:机械臂关节空间运动

import numpy as np

# 逆运动学函数
def inverse_kinematics(target_position):
    # 这里使用简单的示例计算
    theta1 = np.arctan2(target_position[1], target_position[0])
    d = np.sqrt(target_position[0]**2 + target_position[1]**2)
    theta2 = np.arctan2(target_position[2], d)
    return [theta1, theta2]

# 路径规划函数
def joint_space_path_planning(start_angles, target_angles, steps=100):
    path = []
    for i in range(steps):
        t = i / (steps - 1)
        angles = [(1 - t) * start + t * target for start, target in zip(start_angles, target_angles)]
        path.append(angles)
    return path

# 模拟设置关节角度的函数
def set_joint_angles(angles):
    print(f"Setting joint angles to: {angles}")

# 运动函数
def move_joints_along_path(path):
    for angles in path:
        set_joint_angles(angles)
        # 模拟等待下一步
        # time.sleep(0.1)

# 示例使用
start_angles = [0, 0]
target_position = [1, 1, 1]
target_angles = inverse_kinematics(target_position)
path = joint_space_path_planning(start_angles, target_angles)
move_joints_along_path(path)

在关节空间运动过程中,如果不需要通过逆运动学求解具体关节角度,通常是因为你已经有了目标关节角度。以下是实际运动过程的详细步骤,以及调试方法:

  1. 初始关节角度设定
    确定机器人当前的关节角度作为起点。

  2. 目标关节角度设定
    确定目标位置对应的目标关节角度。

  3. 路径规划
    在关节空间中规划从当前关节角度到目标关节角度的路径,确保运动平滑。

  4. 运动控制
    通过关节控制器驱动每个关节沿规划路径运动,实时监控和调整关节角度。

笛卡尔空间运动过程步骤

  1. 目标位置设定
    确定机器人末端执行器的目标位置和姿态。
  2. 路径规划
    在笛卡尔空间中规划末端执行器的运动路径,确保运动平滑并避免碰撞。
  3. 逆运动学计算
    根据规划的笛卡尔路径,计算出每个路径点对应的关节角度。
  4. 运动控制
    通过关节控制器驱动每个关节沿计算的路径点运动,实时监控和调整关节角度。
import numpy as np

# 路径规划函数
def cartesian_path_planning(start_position, target_position, steps=100):
    path = []
    for i in range(steps):
        t = i / (steps - 1)
        position = [(1 - t) * start + t * target for start, target in zip(start_position, target_position)]
        path.append(position)
    return path

# 逆运动学函数
def inverse_kinematics(position, orientation=None):
    # 这里使用简单的示例计算
    # 实际应用中需要使用机器人专用的逆运动学算法
    joint_angles = [np.arctan2(position[1], position[0]), np.arctan2(position[2], np.sqrt(position[0]**2 + position[1]**2))]
    return joint_angles

# 模拟设置关节角度的函数
def set_joint_angles(angles):
    print(f"Setting joint angles to: {angles}")

# 运动函数
def move_along_path(cartesian_path):
    for position in cartesian_path:
        joint_angles = inverse_kinematics(position)
        set_joint_angles(joint_angles)
        # 模拟等待下一步
        # time.sleep(0.1)

# 示例使用
start_position = [0, 0, 0]
target_position = [1, 1, 1]
cartesian_path = cartesian_path_planning(start_position, target_position)
move_along_path(cartesian_path)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值