锁相环(phase-locked loops,PLL)设计_抖动和相位噪声
一、前言
未来将会不定时更新PLL相关的文章,主要目的是作为个人的学习笔记,关于锁相环的基础,可以参考《模拟CMOS集成电路设计_Behzad Razavi》后面几章的内容,下面的文章主要参考书籍是的英文书籍《DESIGN OF CMOS PHASE‑LOCKED LOOPS_Behzad Razavi》,个人认为本书是一本很好的教材。
1.1 为什么要研究抖动和相位噪声?
在锁相环设计过程中,必须对抖动和相位噪声进行考虑,振荡器在功耗和相位噪声之间存在权衡(trade-off),在设计之初就应该对其进行考虑,在不考虑相位噪声的前提下设计振荡器是没有意义的。
1.2 相位噪声
噪声是一个随机过程,在未来某个时刻的准确值是无法预测的,可以通过统计方法对噪声进行描述,在时域中可以计算噪声的概率密度函数(PDF),根据中心极限定理,当许多独立随机变量叠加时,其总和趋向于服从高斯分布,这适用于满足一些条件的独立随机过程的叠加,其中噪声也符合这个规律,相关内容不在赘述。
高斯分布的标准差 σ ,代表噪声的均方根值(rms),高斯分布时域峰值很少超过
±
4
σ
±4σ
±4σ,因为
∣
x
∣
>
4
σ
∣x∣>4σ
∣x∣>4σ在
p
x
(
x
)
p_x (x)
px(x)下的面积非常小。
对于振荡器的噪声分析,主要在其频域中展开,由于噪声的随机性,噪声并不适用傅里叶变换,可以用功率谱来描述频域中的噪声:
频谱:定义为信号在每个频率点为中心的1Hz带宽内携带的能量。
二、频谱噪声的近似
连续频谱的近似过程如下:
(1)将频谱分成等间隔的窄带,如图(a)所示;(2)将窄带的面积集中成一个脉冲,如图(b)所示;(3)频域中每一个脉冲对应时域的一个对应频率的正弦波;因此可以用大量时域中不同频率的正弦波来对噪声建模。
总之,在固定时间窗0~ta观测噪声,相当于对所有频率成分进行HPF,该HPF具有πtaf给出的响应。这一点在本章稍后讨论周期间抖动时证明是有用的
噪声携带的总平均功率等于其频谱下的面积。请注意,频谱中的每个频率分量,无论是否“感兴趣”,都会导致振幅的时域波动(一般来说,上升沿取决于高频分量)。
三、抖动和相位噪声
对于一个理想无噪声的振荡器
(a)波形周期不随时间变化;
(b)波形瞬时频率不随时间变化;
(c)波形的过零点在t=nT1均匀出现;这三种观点是等价的。
实际上由于振荡器电路中存在噪声,这些噪声会对振荡器输出的波形幅度和相位产生影响。若忽略噪声对幅度的影响,关注噪声对输出波形频率的影响,与上述三种观点对应,噪声的影响有
(a)使振荡周期不相等;
(b)瞬时频率不断变化;
(c)过零点不均匀;
结果是噪声随机的对输出的频率和相位进行调制。三种角度如图所示即噪声n(t)对理想输出“载波”的调制 V o u t ( t ) = V 0 c o s [ ω 0 t + φ n ( t ) ] V_out (t)=V_0 cos[ω_0 t+φ_n (t)] Vout(t)=V0cos[ω0t+φn(t)],以 φ n ( t ) φ_n (t) φn(t)对瞬时频率调制为例,瞬时频率可以表示为 ω 0 + d φ n / d t , d φ n / d t ≠ 0 ω_0+dφ_n/dt,dφ_n/dt≠0 ω0+dφn/dt,dφn/dt=0。(瞬时相位变化,等效频率变化)
3.1抖动(Jitter)和相位噪声(Phase noise)
抖动定义:
定义:“时域波形”过零点与理想过零点的偏移,这种现象被称为“抖动”。抖动通常指时域现象
例:一个VCO,其控制电压存在一个
V
c
o
n
t
=
V
m
c
o
s
(
ω
m
t
)
V_cont=V_m cos(ω_m t)
Vcont=Vmcos(ωmt) 的微小确定性扰动,分析输出抖动情况,输出可以表示为
总相位和过量相位波形如下
通过表达式可以看出,过零点在时间上不均匀分布,实际过零点与理想过零点最大偏差,发生在剩余相位最值处(最大或者最小),过量相位的峰-峰值达到
2
K
ν
c
o
V
m
/
ω
m
2K_νco V_m/ω_m
2KνcoVm/ωm弧度或者达到
[
(
2
K
V
C
O
V
m
/
ω
m
)
/
(
2
π
)
]
(
2
π
/
ω
0
)
=
2
K
V
C
O
V
m
/
(
ω
m
ω
0
)
[(2K_VCO V_m/ω_m)/(2π)](2π/ω_0)=2K_VCO V_m/(ω_m ω_0)
[(2KVCOVm/ωm)/(2π)](2π/ω0)=2KVCOVm/(ωmω0) (时间偏移:周期数*周期时间),也可以将抖动的平均周期归一化为
[
2
K
V
C
O
V
m
/
(
ω
m
ω
0
)
]
/
(
2
π
/
ω
0
)
=
K
V
C
O
V
m
/
(
π
ω
m
)
[2K_VCO V_m/(ω_m ω_0)]/(2π/ω_0)= K_VCO V_m/(πω_m)
[2KVCOVm/(ωmω0)]/(2π/ω0)=KVCOVm/(πωm)
周期性干扰会使振荡器的频率出现“确定性抖动”(DJ),这种干扰可以来自明确的控制电压或来自电源、衬底或者其他机制;
抖动的程度可以通过**“眼图”**来确定,但对于振荡器相位调制的时域视图并不容易揭示扰动是随机的还是确定性的。例如,如果振荡器受到周期性干扰,如图2.13所示,累积输出波形仍然如图2.14(b)所示(时域看不出是确定性抖动还是随机抖动)。因此,区分不同类型的干扰只能通过频域分析。
3.2 窄带调频近似(FM)确定VCO输出频谱
一个VCO,其控制电压存在一个 $ V_cont=V_m cos(ω_m t)$ 的微小确定性扰动,分析输出频谱。
首先,输出可以表示为
这种近似被称为“窄带调频近似(FM近似)”如图2.15所示,输出频谱由
ω
0
ω_0
ω0 处的一个主分量(称为“载波”)和对称布置在其周围的两个“边带”(也称为“杂散”)组成,边带的幅度和载波幅度,总计为
K
V
C
O
V
m
/
(
2
ω
m
)
K_{VCO} V_m/(2ω_m)
KVCOVm/(2ωm)。随着调制频率
ω
m
ω_m
ωm 的增加,边带幅度下降,抖动也下降
通过频谱可以揭示出很多关于抖动的性质,根据边带的相对幅度,我们可以预测峰间抖动。过零点与理想时间点的峰-峰最大偏差等于
2
K
V
C
O
V
m
/
ω
m
2K_{VCO} V_m/ω_m
2KVCOVm/ωm 弧度。因此,归一化边带的幅度(边带幅度比上载波幅度)乘以
4
4
4 产生以弧度为单位的峰间抖动。
3.3 电源调制LC-VCO
电源上存在微小噪声:
V
D
D
=
V
D
D
0
+
V
m
c
o
s
ω
m
t
V_{DD}=V_DD0+V_m cosω_m t
VDD=VDD0+Vmcosωmt,确定输出边带幅度
器件电容
C
D
B
C_{DB}
CDB可以有如下表示
其中m约为0.3,
φ
B
φ_B
φB为结内建电势,约等于
0.8
V
0.8V
0.8V。由于振荡频率
ω
1
=
1
/
√
(
L
1
(
C
1
+
C
D
B
)
)
ω_1=1/√(L_1 (C_1+C_{DB}))
ω1=1/√(L1(C1+CDB)),可以得到电源调制
V
C
O
VCO
VCO的增益为
化简得到
每个边带的归一化幅度等于
K
V
C
O
V
m
/
(
2
ω
m
)
K_{VCO} V_m/(2ω_m)
KVCOVm/(2ωm)
相位噪声定义:
过零点或周期中的相差可以被视为相位调制,表示为
V
o
u
t
(
t
)
=
V
0
c
o
s
[
ω
0
t
+
φ
n
(
t
)
]
V_{out} (t)=V_0 cos[ω_0 t+φ_n (t)]
Vout(t)=V0cos[ω0t+φn(t)],称
φ
n
(
t
)
φ_n (t)
φn(t)为相位噪声。
相位噪声和抖动之间存在任何差异。通常,相位噪声仅指相位或过零点的随机波动,而抖动除了随机量还可能包含确定性(周期性)分量,如示例2.5中所述。在频域中(频域,一个是确定分量的边带(抖动),另一个表现为频谱变宽(相噪))
对相位噪声定性分析,由于
φ
n
(
t
)
φ_n (t)
φn(t) 随机调制
V
o
u
t
V_{out}
Vout 的相位和频率,因此在
ω
=
ω
0
ω=ω_0
ω=ω0 时,频谱不再是单个脉冲。也就是说,瞬时频率随机偏离
ω
0
ω_0
ω0,将信号的一些能量溢出到脉冲附近。结果,频谱变宽,如图所示
假设φ_n (t)≪1,那么
上式表明,输出相位噪声频谱由幅度
V
0
V_0
V0 的载波
4
V
0
s
i
n
(
ω
0
t
)
4V_{0} sin(ω_{0}t)
4V0sin(ω0t) 与
φ
n
(
t
)
φ_n (t)
φn(t)的乘积构成,其
φ
n
(
t
)
V
0
s
i
n
(
ω
0
t
)
φ_n (t) V_0 sin(ω_0 t)
φn(t)V0sin(ω0t) 频谱偏移的中心为
ω
0
ω_0
ω0,如果
φ
n
φ_n
φn 的频谱是以0为中心,则输出频谱如下图所示,随机的偏离
f
0
f_0
f0
通过上图可以看出,较大的频率偏差,出现概率很小,振荡器的频谱组成倾向于
f
=
f
0
f=f_0
f=f0,
3.4 S_φn和归一化S_out (f)是相关
输出包含上变频频谱
φ
n
(
t
)
V
0
s
i
n
(
ω
0
t
)
φ_n (t) V_0 sin(ω_0 t)
φn(t)V0sin(ω0t),即相位噪声
φ
n
φ_n
φn 乘以
V
0
s
i
n
(
ω
0
t
)
V_0 sin(ω_0 t)
V0sin(ω0t),频域表示为
φ
n
φ_n
φn 被移动到
±
f
0
±f_0
±f0 处,双边频谱幅度为
V
0
2
/
4
V_{0}^{2}/4
V02/4,单边频谱幅度
2
(
V
0
2
/
4
)
S
φ
n
(
f
−
f
0
)
2(V_0^2/4)S_{φn} (f-f_0)
2(V02/4)Sφn(f−f0) ,与
V
0
2
/
2
V_0^2/2
V02/2 的载波功率归一化,产生归一化相位噪声
S
o
u
t
,
c
(
f
)
=
S
φ
n
(
f
−
f
0
)
S_{out,c} (f)=S_{φn} (f-f_0)
Sout,c(f)=Sφn(f−f0) 。因此,
S
φ
n
(
f
)
S_φn (f)
Sφn(f) 和归一化的单边输出频谱除了频移之外是相同的。这些转换如图2.20所示(输出相噪,上变频,形状不变)。
由于相位噪声频谱不是平坦的,我们必须在不同的“频率偏移”处指定其值。如果
S
o
u
t
(
f
)
S_out (f)
Sout(f) 的形状是唯一的,我们可以简单地指定一个频率偏移处的相位噪声。如图2.19所示,该程序由四个步骤组成:(1)选择频率偏移Δf(例如100 kHz);(2)计算噪声
Δ
f
Δf
Δf 处1-Hz带宽中的功率;(3)将该功率归一化为载波功率,由等式中的
V
0
2
/
2
V_0^2/2
V02/2给出;(4)对载波功率取
10
l
o
g
10 log
10log;单位为
d
B
c
/
H
z
dBc/Hz
dBc/Hz, 其中“c”表示归一化
3.5 VCO相位噪声模型(电阻)
VCO的相位噪声可以用两个不同的模型表示:(1)作为添加到控制电压的电压量,或(2)作为添加在输出相位的相位量,当然,这两个添加量具有不同的谱。
从相位噪声的表达式中可以看到,
S
φ
n
∝
1
/
f
2
S_{φn}∝1/f^2
Sφn∝1/f2 ,相对于理想时钟,独立(“自由运行”)VCO的白噪声引起的抖动可以变得任意大(但是锁相VCO的抖动和相位噪声是有界的)
3.6 FM近似的局限性
FM窄带调频近似,尽管数学上很方便,但窄带FM近似
V
0
c
o
s
[
ω
0
t
+
φ
n
(
t
)
]
≈
V
0
c
o
s
ω
0
t
−
φ
n
(
t
)
V
0
s
i
n
ω
n
t
V_0 cos[ω_0 t+φ_n (t)] ≈ V_0 cosω_0 t-φ_n (t)V_0 sinω_n t
V0cos[ω0t+φn(t)]≈V0cosω0t−φn(t)V0sinωnt确实会导致一些矛盾。
(1)首先,我们推测频率噪声或相位噪声倾向于在
ω
0
ω_0
ω0 处加宽频谱脉冲,但该方程仍然包含脉冲,如图所示
(2)其次,虽然我们假设
φ
n
(
t
)
≪
1
φ_n (t)≪1
φn(t)≪1 ,但通过上文讨论,并非如此:剩余相位在时域中可以变得任意大。我们通常交替使用两个频谱,
S
φ
n
(
f
)
S_{φn} (f)
Sφn(f) 和
S
o
u
t
(
f
)
S_{out} (f)
Sout(f),但我们必须解决这些矛盾。
假设VCO的频率由白噪声调制,通过
S
ω
=
η
/
2
S_ω=η/2
Sω=η/2 对产生的频率噪声进行建模,其中
S
ω
S_ω
Sω 是频率噪声谱(双边),
η
η
η 是常数,相位噪声谱与频率噪声谱有如下关系
S
φ
n
(
f
)
=
S
ω
/
ω
2
=
(
η
/
2
)
/
(
4
π
f
)
2
S_{φn} (f)=S_ω/ω^2=(η/2)/(4πf)^2
Sφn(f)=Sω/ω2=(η/2)/(4πf)2。通过计算波形的自相关并对结果进行傅立叶变换得到输出电压
V
0
c
o
s
[
ω
0
t
+
φ
n
(
t
)
]
V_0 cos[ω_0 t+φ_n (t)]
V0cos[ω0t+φn(t)] 频谱:
3.7 Voltage Regulator 闪烁噪声对VCO的影响
V
C
O
VCO
VCO通常对其电源电压敏感,显示出从
V
D
D
V_{DD}
VDD 到
ω
o
u
t
ω_{out}
ωout 的有限增益。因此,
V
C
O
VCO
VCO 通常由专用的片上电压调节器供电,以便将其电源与芯片上其他电路产生的噪声隔离。不幸的是,电压调节器本身也会受到闪烁噪声的影响。将
V
D
D
V_{DD}
VDD上的噪声建模为
α
/
f
α/f
α/f,其中
α
α
α 是常数,下面确定输出相位噪声频谱
假设电源
V
D
D
V_{DD}
VDD到
ω
o
u
t
ω_out
ωout的有限增益为
K
V
C
O
K_{VCO}
KVCO,那么通过
S
n
,
o
u
t
(
f
)
=
S
n
1
(
f
)
×
∣
H
(
f
)
∣
2
S_{n,out} (f)=S_n1 (f)×|H(f)|^2
Sn,out(f)=Sn1(f)×∣H(f)∣2得到输出的相位噪声为
因此闪烁噪声引起的相位噪声遵循
S
φ
n
(
f
)
∝
1
/
f
3
S_{φn} (f)∝1/f^3
Sφn(f)∝1/f3。如图2.26(b)所示,这种行为表现为对数对数标度上的
−
30
d
B
/
d
e
c
−30 dB/dec
−30dB/dec 斜率,之后是对应于白噪声引起的相位噪声遵循
S
φ
n
(
f
)
∝
1
/
f
2
S_{φn} (f)∝1/f^2
Sφn(f)∝1/f2,表现为的
−
20
d
B
/
d
e
c
−20 dB/dec
−20dB/dec 斜率。
3.8 抖动与相位噪声之间的关系
时域中的抖动可以由(确定性的)边带或(随机的)相位噪声引起。在上述讨论中可知,以弧度为单位的峰-峰确定性抖动(DJ)等于输出边带归一化幅度的4倍。下面继续推导了随机抖动与相位噪声频谱之间的关系。随机性表明,我们不能指定峰间抖动,必须寻求rms值。
3.9 抖动的类型
排版不易,我直接截图了QAQ
四、相位噪声和功率之间的权衡
总的输出可以表示为
五、基本相位噪声机制
我觉得,上面已经挺多了,下面就全省略了
…略…
六、抖动对性能的影响
我觉得,上面已经挺多了,下面就全省略了
…略…
七、相位噪声对性能的影响
我觉得,上面已经挺多了,下面就全省略了
…略…
往期链接链接:
锁相环(phase-locked loops,PLL)设计_振荡器基础 链接:【模拟集成电路】锁相环(phase-locked loops,PLL)设计_振荡器基础
锁相环(phase-locked loops,PLL)设计_抖动和相位噪声 链接:【模拟集成电路】锁相环(phase-locked loops,PLL)设计_抖动和相位噪声