Vision Transformer with Deformable Attention可变形注意力

《Vision Transformer with Deformable Attention》笔记

方法

1.可变形机制

  • PVT的降采样导致信息丢失
  • 滑动窗口注意力感受野增长慢(大目标不友好)
  • DCN首次提出可变形机制(空间复杂度大)
  • DETR设置比较小的keys减少开销(导致信息丢失)
  • 本文利用特征图中重要区域去指导reference points
    • 这些聚焦区域由多组deformable points确定,这些采样点通过偏移网络从query中学习到。
    • 采用双线性插值法从特征图中采样特征
    • 然后将采样的特征输入键和值投影,得到变形的键和值
    • 最后,应用标准的多头注意方法来参与对采样键的查询
      在这里插入图片描述

2.Deformable attention module.

  • 给定输入特征图x∈H×W×C,生成一个点p∈HG×WG×2的统一网格作为参考。

  • 网格大小从输入的特征图大小中降采样一个因子r,HG = H/r,WG = W/r

  • 参考点的值为线性间隔的二维坐标{(0,0),……(HG−1,WG−1)}

  • 然后根据网格形状HG×WG将其归一化到范围[−1,+1],其中(−1,−1)表示左上角,(+1,+1)表示右下角。

  • 为了获得每个参考点的偏移量,将特征映射线性投影到查询标记q=xWq,然后输入一个轻量子网络θoffset(·),生成偏移量∆p=θoffset(q)。

  • 为了稳定训练过程,我们用一些预定义的因子s来缩放∆p的振幅,以防止过大的偏移量,即∆p←tanh(∆p)。

  • 投影矩阵:

在这里插入图片描述

  • 将采样函数φ(·;·)设置为双线性插值,使其可微:

    在这里插入图片描述

​ 其中,g(a,b)= max(0,1−|a−b|),(rx,ry)索引在z∈RH×W×C上的所有位置

  • 注意力头的输出公式为:

在这里插入图片描述

3.Offset generation.

  • 考虑到每个参考点覆盖一个局部s×s区域(s是偏移的最大值),生成网络也应该有对局部特征的感知,以学习合理的偏移。
  • 将子网络实现为两个具有非线性激活的卷积模块
  • 首先通过一个5×5的深度卷积来捕获局部特征
  • 然后,采用GELU激活和1×1卷积得到二维偏移量。
  • 1×1卷积的偏差被降低,以缓解所有位置的强迫性偏移。

GELU激活和1×1卷积得到二维偏移量。

  • 1×1卷积的偏差被降低,以缓解所有位置的强迫性偏移。

4.Offset groups.

  • 为了促进变形点的多样性,在MHSA中遵循类似的范式,并将特征通道划分为G组。
  • 每个组的特征使用共享的子网络分别生成相应的偏移量。
  • 在实际应用中,注意模块的头数M被设置为偏移组G大小的多倍,确保多个注意头被分配给一组变形的键和值。
  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值