Robustly Optimized Deep Feature Decoupling Network for Fatty Liver Diseases Detection
摘要
背景: 当前的医学图像分类工作主要以更高的平均性能为目标,往往忽视了不同类别之间的平衡。这可能导致类之间的识别准确性存在显著差异,并存在明显的识别弱点。没有海量数据的支持,深度学习面临着脂肪肝细粒度分类的挑战。
目的: 提出了一个创新的深度学习框架,该框架结合了特征解耦和自适应对抗训练。
方法: 采用两个迭代压缩的解耦器来监督解耦腹部超声图像中与脂肪肝相关的常见特征和特定特征。随后,解耦的特征在转换色彩空间后与原始图像连接,并被馈送到分类器中。在对抗性训练中适应性地调整扰动,并通过每个职业的准确性来平衡对抗性强度。该模型将通过正确分类对抗样本来消除识别弱点,从而提高识别稳健性。
结果: 准确率提高了 4.16%,达到了 82.95%。
代码地址 截止2025.2.8号,目前代码地址为空
方法
图 1.从左到右,四个超声图像是:(1) 正常肝脏,(2) 轻度,(3) 中度和 (4) 重度脂肪肝。正方形标记了横膈膜和血管的大致位置。箭头指向可疑的脂肪堆积位置。
1) 对于特征解耦阶段,提出的 ICFDNet 生成解耦特征,并以不同的方法监督解耦过程。
2) 对于对抗性训练阶段,使用自适应对抗过程为不同的图像添加相应的扰动,并将它们与解耦的特征连接起来。
ICFDNet 的网络结构。
对抗训练:
实验结果