论文链接:https://arxiv.org/abs/2402.15627
MegaScale系统简介
MegaScale是一个专为在超过10,000个GPU上训练大型语言模型(LLMs)而设计的生产系统。该系统通过算法和系统组件的协同设计,解决了大规模训练中的效率和稳定性挑战,从而实现了高效的训练。
问题现状
随着模型参数规模和训练数据量的增加,大型语言模型训练所需的计算资源也日益增长。这导致了训练效率和稳定性的挑战成为关键问题。
- 第一个挑战是在规模上实现高训练效率。模型FLOPs利用率(MFU)是观察到的吞吐量与假设峰值FLOPs为100%时的理论最大吞吐量的比率[7]。这是一个标准的评估训练效率的指标,直接转化为端到端训练速度。LLM训练并不是令人尴尬的并行。为了训练一个LLM,模型被分割在GPU上,GPU之间进行大量通信以取得进展。除了通信,操作符优化、数据预处理和GPU内存消耗等因素也显著影响MFU。
- 第二个挑战是在规模上实现高训练稳定性,即在整个训练过程中保持高训练效率。从生产的角度来看,稳定性尤为重要,因为LLMs的训练时间很长。用一万亿个标记训练一个LLM可能需要数周时间。这个规模和时间比常规DNN训练作业的规模和时间大得多。对于LLM训练来说,故障和落后者是常态而不是例外。在这样的规模下,故障和落后者的后果是毁灭性的。故障非常昂贵,考虑到规模之大,减少恢复时间至关重要。一个落后者不仅影响自己的工作,还会拖慢涉及数万个GPU的整个作业
相关研究
目前已经有多种大型语言模型被开发和训练,如GPT-3、PaLM等。然而,大多数研究侧重于模型本身的性能提升,而对支撑这些模型训练的系统基础设施的具体细节探讨相对较少。
解决方案主要内容
-
算法优化:
-
并行Transformer模块:将Transformer架构的不同部分分布在多个GPU上进行并行处理。
-
滑动窗口注意力(Sliding Window Attention, SWA):减少长序列处理时的计算复杂度。
-
LAMB优化器:大规模训练受到批量大小限制。特别是,增加批量可能会影响模型收敛。LAMB可以将批量大小扩展到4倍,而不会损失准确性。针对大规模模型的优化算法,有效处理稀疏梯度更新。
-
通信重叠:通过在数据并行、流水线并行以及张量/序列并行中采用技术来隐藏通信开销。
-
高效操作符:
-
FlashAttention-2:优化注意力机制的实现,提高计算效率。
-
LayerNorm:优化层归一化的实现,提高计算速度。
-
GeLU:优化激活函数的实现,加快运算速度。
-
数据流水线优化:采用异步数据预处理和数据加载器优化策略,确保数据流的连续性和高效性。
-
集体通信组初始化:优化NCCL通信组的初始化过程,减少初始化时间。
-
网络性能调优:包括设计自定义网络拓扑结构、减少ECMP哈希冲突、定制拥塞控制策略等措施。
-
健壮性训练框架:提供自动化故障定位和恢复功能,确保训练过程的高稳定性。
心跳检测与预警系统
心跳检测机制是实时监控集群健康状况的关键组件,通过持续监测各个节点的活动状态,能够及时发现并预警潜在的异常情况。系统采用毫秒级的监测频率,对IP地址、Pod名称、硬件状态、训练进程及RDMA流量进行全方位监控。一旦监测到任何异常,如硬件故障、训练停滞或网络流量突变,系统将立即触发警报,为管理员提供早期预警,以便迅速采取措施。
自诊断系统
自诊断系统具备轻量级软硬件故障诊断能力,能够在不影响正常运行的前提下,自动定位并识别系统中存在的问题。这一机制极大地提升了问题排查的效率,减少了故障响应时间,确保了集群的稳定运行。
主机内网测试
主机内网测试旨在评估RDMA技术在本地环境下的性能表现,主要包括:
-
RDMA网卡到主机内部端点(如内存节点和GPU)的带宽测试:确保数据传输的高速率和低延迟,为高效计算奠定基础。
-
同一主机上不同RDMA网卡之间的连接与带宽测试:验证多网卡环境下数据通信的可靠性和效率。
-
NCCL测试:利用NVIDIA Collective Communications Library进行以下测试:
- 服务器内GPU间的alltoall测试,评估数据交换效率。
- 同一交换机下服务器间的allreduce测试,检验大规模分布式计算的同步性能。
故障恢复机制:双阶段Checkpoint策略
为了提高故障恢复的速度与效率,我们采用了创新的双阶段Checkpoint保存与调用机制:
快速Checkpoint保存
-
第一阶段:在模型训练过程中,将Checkpoint临时写入主机内存,实现快速保存,减少磁盘I/O带来的延迟。
-
第二阶段:在模型继续训练的同时,异步地将Checkpoint从内存中写入高容量的HDFS存储系统,确保数据持久化。
快速Checkpoint调用
-
第一阶段:当需要恢复训练时,单个GPU首先从HDFS读取Checkpoint数据,减少整体等待时间。
-
第二阶段:读取Checkpoint的GPU将数据广播给所有其他需要相同数据的GPU,实现快速同步,加快恢复速度。
这套双阶段Checkpoint机制不仅显著提高了故障恢复的效率,还保障了训练进程的连续性与数据的安全性,是构建高可用、高性能分布式训练平台的重要组成部分。
- 深入的可观测性:开发诊断工具来监控系统组件和事件,以便及时发现问题并采取措施。
实验数据及效果
-
MegaScale在使用12,288个GPU训练一个拥有1750亿参数的LLM时,实现了55.2%的模型FLOPs利用率(MFU),相比Megatron-LM提高了1.34倍。
-
在实际生产环境中,MegaScale成功训练了一个拥有数千亿参数的专有模型,在多周的训练过程中经历了多次故障,但系统能够自动检测并恢复训练过程,保证了训练的连续性和效率。