MegaScale:万级GPU集群中大模型训练

论文链接:https://arxiv.org/abs/2402.15627

MegaScale系统简介

MegaScale是一个专为在超过10,000个GPU上训练大型语言模型(LLMs)而设计的生产系统。该系统通过算法和系统组件的协同设计,解决了大规模训练中的效率和稳定性挑战,从而实现了高效的训练。
在这里插入图片描述

问题现状

随着模型参数规模和训练数据量的增加,大型语言模型训练所需的计算资源也日益增长。这导致了训练效率和稳定性的挑战成为关键问题。

  • 第一个挑战是在规模上实现高训练效率。模型FLOPs利用率(MFU)是观察到的吞吐量与假设峰值FLOPs为100%时的理论最大吞吐量的比率[7]。这是一个标准的评估训练效率的指标,直接转化为端到端训练速度。LLM训练并不是令人尴尬的并行。为了训练一个LLM,模型被分割在GPU上,GPU之间进行大量通信以取得进展。除了通信,操作符优化、数据预处理和GPU内存消耗等因素也显著影响MFU。
  • 第二个挑战是在规模上实现高训练稳定性,即在整个训练过程中保持高训练效率。从生产的角度来看,稳定性尤为重要,因为LLMs的训练时间很长。用一万亿个标记训练一个LLM可能需要数周时间。这个规模和时间比常规DNN训练作业的规模和时间大得多。对于LLM训练来说,故障和落后者是常态而不是例外。在这样的规模下,故障和落后者的后果是毁灭性的。故障非常昂贵,考虑到规模之大,减少恢复时间至关重要。一个落后者不仅影响自己的工作,还会拖慢涉及数万个GPU的整个作业

相关研究

目前已经有多种大型语言模型被开发和训练,如GPT-3、PaLM等。然而,大多数研究侧重于模型本身的性能提升,而对支撑这些模型训练的系统基础设施的具体细节探讨相对较少。

解决方案主要内容

  • 算法优化

  • 并行Transformer模块:将Transformer架构的不同部分分布在多个GPU上进行并行处理。

  • 滑动窗口注意力(Sliding Window Attention, SWA):减少长序列处理时的计算复杂度。在这里插入图片描述

  • LAMB优化器:大规模训练受到批量大小限制。特别是,增加批量可能会影响模型收敛。LAMB可以将批量大小扩展到4倍,而不会损失准确性。针对大规模模型的优化算法,有效处理稀疏梯度更新。
    在这里插入图片描述

  • 通信重叠:通过在数据并行、流水线并行以及张量/序列并行中采用技术来隐藏通信开销。

  • 高效操作符

  • FlashAttention-2:优化注意力机制的实现,提高计算效率。

  • LayerNorm:优化层归一化的实现,提高计算速度。

  • GeLU:优化激活函数的实现,加快运算速度。

  • 数据流水线优化:采用异步数据预处理和数据加载器优化策略,确保数据流的连续性和高效性。

  • 集体通信组初始化:优化NCCL通信组的初始化过程,减少初始化时间。

  • 网络性能调优:包括设计自定义网络拓扑结构、减少ECMP哈希冲突、定制拥塞控制策略等措施。

  • 健壮性训练框架:提供自动化故障定位和恢复功能,确保训练过程的高稳定性。
    在这里插入图片描述

心跳检测与预警系统

心跳检测机制是实时监控集群健康状况的关键组件,通过持续监测各个节点的活动状态,能够及时发现并预警潜在的异常情况。系统采用毫秒级的监测频率,对IP地址、Pod名称、硬件状态、训练进程及RDMA流量进行全方位监控。一旦监测到任何异常,如硬件故障、训练停滞或网络流量突变,系统将立即触发警报,为管理员提供早期预警,以便迅速采取措施。

自诊断系统

自诊断系统具备轻量级软硬件故障诊断能力,能够在不影响正常运行的前提下,自动定位并识别系统中存在的问题。这一机制极大地提升了问题排查的效率,减少了故障响应时间,确保了集群的稳定运行。

主机内网测试

主机内网测试旨在评估RDMA技术在本地环境下的性能表现,主要包括:

  1. RDMA网卡到主机内部端点(如内存节点和GPU)的带宽测试:确保数据传输的高速率和低延迟,为高效计算奠定基础。

  2. 同一主机上不同RDMA网卡之间的连接与带宽测试:验证多网卡环境下数据通信的可靠性和效率。

  3. NCCL测试:利用NVIDIA Collective Communications Library进行以下测试:

    • 服务器内GPU间的alltoall测试,评估数据交换效率。
    • 同一交换机下服务器间的allreduce测试,检验大规模分布式计算的同步性能。

故障恢复机制:双阶段Checkpoint策略

为了提高故障恢复的速度与效率,我们采用了创新的双阶段Checkpoint保存与调用机制:

快速Checkpoint保存
  • 第一阶段:在模型训练过程中,将Checkpoint临时写入主机内存,实现快速保存,减少磁盘I/O带来的延迟。

  • 第二阶段:在模型继续训练的同时,异步地将Checkpoint从内存中写入高容量的HDFS存储系统,确保数据持久化。

快速Checkpoint调用
  • 第一阶段:当需要恢复训练时,单个GPU首先从HDFS读取Checkpoint数据,减少整体等待时间。

  • 第二阶段:读取Checkpoint的GPU将数据广播给所有其他需要相同数据的GPU,实现快速同步,加快恢复速度。

这套双阶段Checkpoint机制不仅显著提高了故障恢复的效率,还保障了训练进程的连续性与数据的安全性,是构建高可用、高性能分布式训练平台的重要组成部分。

  1. 深入的可观测性:开发诊断工具来监控系统组件和事件,以便及时发现问题并采取措施。
    在这里插入图片描述
    在这里插入图片描述

实验数据及效果

  • MegaScale在使用12,288个GPU训练一个拥有1750亿参数的LLM时,实现了55.2%的模型FLOPs利用率(MFU),相比Megatron-LM提高了1.34倍。
    在这里插入图片描述
    在这里插入图片描述

  • 在实际生产环境中,MegaScale成功训练了一个拥有数千亿参数的专有模型,在多周的训练过程中经历了多次故障,但系统能够自动检测并恢复训练过程,保证了训练的连续性和效率。

校园失物招领微信小程序源码, 失物招领小程序主要为解决大学生时常丢失物品而且很难找回以及归还过程繁琐不方便的问题, 与传统的失物招领方式不同,该款校园失误招领小程序拥有快捷发布寻物启事和失误找领功能, 快速查找、极速归还、高效沟通、防误领冒领等功能, 在开发校园失物招领小程序前与用户访谈发现有近40的同学校园内频繁丢失物品、证件、校园卡等, 数码产品、日用品等,丢失区域主要发生在教学楼、图书馆和食堂。 拾领校园失物招领小程序继承了寻物启事和失物招领,丢失物品或拾取物品都可发布帖子, 首页的横幅滚动公告展示通知公告等,banner图片化的方式更具有视觉吸引, 最新信息可显示最近发布的招领信息或寻物信息,更加方便快捷的展示信息, 用户可通过首页的发布按钮发布帖子,发布者只需填写物品的相关信息,类别、地点等相关信息, 并且可以填写手机号开启认领验证,并可以一键生成二维码分享或分享至群聊和朋友圈。 列表内可以筛选物品类别或精确搜索,物品详情里可展示物品的相关信息, 确认是自己的物品后可点击认领,然后验证信息,需填写物品的关键信息以作辨认, 防止冒领误领,物品详情页可生成二维码海报分享,还有即时的消息联系功能以提高沟通效率, 发布者还可选择放置在代收处,双方还可以通过拨打电话紧急联系,用于紧急情况,让失物找到主人, 个人中心可以管理发布的物品帖子,管理个人信息,包括昵称、默认学校、手机号的修改、 编辑发布的物品帖子、获取帮助等。帮助用户流畅的使用该小程序。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pistachiout

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值