YOLOv8中的C2f模块


在这里插入图片描述

一、结构概述

  • C2f块:首先由一个卷积块(Conv)组成,该卷积块接收输入特征图并生成中间特征图
  • 特征图拆分:生成的中间特征图被拆分成两部分,一部分直接传递到最终的Concat块,另一部分传递到多个Botleneck块进行进一步处理。
  • Bottleneck块:输入到这些Botleneck块的特征图通过一系列的卷积、归一化和激活操作进行处理,最后生成的特征图会与直接传递的那部分特征图在Concat块进行拼接(Concat)。
  • 模型深度控制:在C2f模块中,Botleneck模块的数量由模型的depth muliple参数定义,这意味着可以根据需求灵活调整模块的深度和计算复杂度。
  • 最终卷积块:拼接后的特征图会输入到一个最终的卷积块进行进一步处理,生成最终的输出特征图。

二、模块功能

  • 特征提取:通过初始的卷积块提取输入图像的基本特征。
  • 特征增强:通过多个Botleneck块进一步提炼和增强特征,这些Botleneck块可以捕捉更复杂的模式和细节。
  • 特征融合:通过Concat块将直接传递的特征图和处理后的特征图进行融合,使得模型可以综合利用多尺度、多层次的信息。
  • 输出生成:通过最后的卷积块生成最终的特征图,为后续的检测和分类任务提供丰富的特征表示。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值