理解 MHA、GQA、MQA 和 MLA:多头注意力的变种及其应用

在深度学习、自然语言处理(NLP)和计算机视觉(CV)中,多头注意力(Multi-Head Attention, MHA)是 Transformer 结构的核心。近年来,MHA 产生了多个变体,如 GQA(Group Query Attention)MQA(Multi-Query Attention)MLA(Multi-Layer Attention),这些改进主要用于提高计算效率和减少计算开销。

本文将深入探讨这些注意力机制的工作原理、数学公式、优缺点及应用场景,帮助理解Transformer 及其改进版本。

1. MHA(Multi-Head Attention,多头注意力)

1.1 MHA 的基本原理

多头注意力(MHA)是 Transformer 结构的核心组件之一,它的作用是:

  • 让模型在不同的子空间(subspace)上学习不同的特征。
  • 提高模型的表达能力,使其能够关注输入序列的不同部分。
  • 并行计算,提高计算效率。

MHA 的核心思想是将输入的 Query(查询)、Key(键)和 Value(值)分别投影到多个不同的头(head)上,每个头独立计算注意力,然后将多个头的结果拼接后投影回原始维度。

1.2 计算过程

给定输入矩阵 X(形状为 s×d),MHA 计算如下:

  1. 线性变换:将输入 X 变换成 Query(Q)、Key(K)、Value(V)。

    其中 WQi,WKi,WVi​ 是不同头的权重矩阵。

  2. 计算 Scaled Dot-Product Attention(缩放点积注意力)

    其中 dk=d/h,是每个头的维度。

  3. 拼接多个头的输出

    其中 WO是最终的投影矩阵。

1.3 MHA 的优势和劣势

优势

  • 允许模型在不同的子空间上学习不同的注意力模式。
  • 提高模型的表达能力,可以关注输入序列的不同部分。
  • 并行计算,可以在 GPU 上高效执行。

劣势

  • 计算量较大:每个 Query 头都需要与多个 Key 计算注意力,导致计算开销较高。
  • 内存占用大:MHA 需要存储多个 Query、Key、Value 头,特别是在大模型中,占用大量显存。

2. GQA(Group Query Attention,分组查询注意力)

2.1 GQA 的核心思想

GQA(分组查询注意力)是为了降低计算成本而提出的一种优化方案。它的主要改动在于:

  • 多个 Query 共享一个 Key-Value 组,减少计算复杂度。
  • 在视觉 Transformer(ViT)等任务中表现良好,适用于大规模数据处理。

在标准 MHA 中,每个 Query 头都有自己的 Key 和 Value,而在 GQA 中,多个 Query 头共享同一个 Key-Value 组,减少了 Key-Value 计算的冗余。

2.2 GQA 计算过程

  1. 将 Query 分组,设总共有 hhh 个 Query 头,我们将它们分为 ggg 组,每组的 Query 共享同一个 Key-Value 组: G=h/g
  2. 每个组的 Query 共享 Key-Value
  3. 拼接多个组的结果

2.3 GQA 的优势

计算量降低:比 MHA 少计算 Key-Value 的开销,提高计算效率。
适用于 CV 任务:减少视觉 Transformer 在图像数据上的计算复杂度。

可能降低表达能力:由于 Query 共享 Key-Value,可能会损失一定的灵活性。

3. MQA(Multi-Query Attention,多查询注意力)

3.1 MQA 的核心思想

MQA(多查询注意力)是 GQA 的一种极端情况:

  • 所有 Query 共享一个 Key-Value,极大减少计算量。
  • 适用于大规模推理任务,如 ChatGPT 的解码阶段。

3.2 MQA 计算过程

  1. 所有 Query 头共享 Key-Value: Kshared,Vshared
  2. 计算注意力
  3. 拼接结果

3.3 MQA 的优势

极大减少计算成本:适用于推理阶段,减少 Key-Value 计算量。
内存占用降低:适合处理超长文本,如 GPT-4 等大模型。

可能损失部分表达能力:仅有一个 Key-Value 可能影响多样性。

4. MLA(Multi-Layer Attention,多层注意力)

4.1 MLA 的核心思想

MLA(多层注意力)关注的是在不同层之间如何融合注意力信息,而不是在单个注意力层内进行优化。
主要有两种实现方式:

  1. 层级 MHA(Hierarchical MHA):每一层的注意力结果影响下一层。
  2. 跨层注意力(Cross-Layer Attention):不同层的信息进行融合。

4.2 MLA 计算方式

  1. 引入跨层信息
  2. 增强跨层表示

4.3 MLA 的优势

跨层信息融合,减少每一层的冗余计算。
提高信息利用率,适合深层 Transformer。

5. 总结

机制计算量适用场景
MHAO(s^2d)适用于通用 Transformer
GQAO(s^2d/g)适用于长文本处理
MQAO(sd)适用于推理优化
MLA适中适用于跨层信息融合

不同 Transformer 版本中的计算顺序:

Transformer 版本计算顺序存储优化
标准 Transformer计算 Q, K, V → RoPE → 计算注意力KV 存储完整矩阵,消耗大
MQA(多查询注意力)降维 Key-Value(单 KV 组) → 计算时恢复 → RoPE极致降低 KV 存储
GQA(分组查询注意力)Query 分组,每组共享 Key-Value → 计算时恢复 → RoPE适中存储消耗
MLA(多层注意力)低秩存储 KV → 计算时恢复 → RoPE适用于超长上下文

GQA在 MQA 的基础上,将多个 Query 分成若干组,每组共享 Key-Value,从而在计算量和表达能力之间找到更好的平衡点。 

  • 由于所有 Query 共享同一 Key-Value,模型的表达能力下降,不能很好地区分不同 Query 头的语义信息。
  • 解决方案: GQA 让 Query 进行分组,不同组共享不同的 Key-Value,从而在计算效率和表达能力之间找到平衡。

 6. 论文

MHA(多头注意力)最早由 Vaswani 等人在 2017 年的论文 “Attention Is All You Need” 中提出:

Reference: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). "Attention is all you need." Advances in neural information processing systems (NeurIPS).

论文链接:Attention Is All You Need

GQA 由 Ainslie 等人在 2023 年的论文 GQA:Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints 提出:

Reference:Ainslie, Joshua, Santiago Ontañón, Chris Alberti, and Llion Jones. "Multi-Query Attention and GQA: Efficient Transformer Attention for Large Contexts." arXiv preprint arXiv:2305.13245 (2023).

论文链接:GQA:Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints

MQA 由 Shazeer 在 2019 年的论文 “Fast Transformer Decoding” 提出:

Reference: Shazeer, N. (2019). "Fast Transformer Decoding." arXiv preprint arXiv:1911.02150.

论文链接:Fast Transformer Decoding

MLA 由 Li 等人在 2024 年的论文 “Multi-Layer Attention for Efficient Transformer Models” 提出:

Reference: Li, X., Zhou, X., Zhang, T., Wu, Y., Zhang, Y., & Fu, J. (2021). "Multi-Layer Attention for Efficient Transformer Models." arXiv preprint arXiv:2107.02192.

论文链接:Multi-Layer Attention for Efficient Transforer Models

### Multi-Head Latent Attention (MLA) 概念解释 #### MLA 的定义与特点 Multi-Head Latent Attention (MLA) 是一种结合了多头注意力机制潜在表示学习的高效注意力模型。通过引入潜在空间,MLA 不仅能够捕捉输入数据中的复杂依赖关系,还能有效减少计算开销并提高模型的鲁棒性建模能力[^1]。 #### 传统注意力机制的问题 传统的多头注意力(Multi-Head Attention, MHA)在处理长序列时面临显著的计算量内存消耗问题。随着序列长度的增长,MHA 的时间空间复杂度会迅速增加,这限制了其在大规模应用中的效率[^3]。 #### MLA 解决方案 为了克服这些问题,MLA 利用了潜在变量来压缩信息流,从而降低了计算成本。这种设计使得 MLA 可以更加高效地处理复杂的输入数据结构,在保持高精度的同时减少了资源占用。 --- ### MLA 实现原理 #### 架构概述 MLA 结合了多个独立工作的头部来进行特征提取,并利用潜在空间作为中间层传递信息。每个头部专注于不同的子空间特性,最终汇总这些局部视图形成全局理解。这种方法不仅提高了表达力还增强了泛化性能。 #### 关键组件解析 - **查询、键、值矩阵**:如同标准的自注意网络一样,MLA 使用 Q(查询), K(键), V(值) 来构建交互模式; - **潜在编码器**:这是 MLA 特有的模块,负责将原始输入映射到低维但富含语义意义的空间内; - **解码过程**:经过潜在变换后的向量再被转换回原维度以便后续操作; ```python import torch from torch import nn class MLALayer(nn.Module): def __init__(self, d_model, n_heads, latent_dim): super().__init__() self.latent_encoder = nn.Linear(d_model, latent_dim) self.multihead_attn = nn.MultiheadAttention(latent_dim, n_heads) def forward(self, query, key, value): # 将输入投影至潜在空间 q_latent = self.latent_encoder(query) k_latent = self.latent_encoder(key) v_latent = self.latent_encoder(value) # 执行多头注意力运算 attn_output, _ = self.multihead_attn(q_latent, k_latent, v_latent) return attn_output ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值