李群和李代数(二)——李群和李代数两者的关系理解与应用

在上一篇帖子上对李群和李代数进行了简单的介绍,也对李代数的意义以及李群和李代数的关系,做了简单的介绍,但是只是文字和公式太过抽象,经过查阅资料,并进行总结了这篇文章。

下面是上一篇文章的部分内容

1.应用意义

在视觉slam中,我们需要不断计算相机的位姿和构建地图,相机的位姿表现在其变换矩阵T,由于干扰的存在,我们无法准确获得所需要的信息,所以我们转而求其最小误差。

假设我们有N个三维点p和对应的观测值z,我们的目标就是寻找一个最佳位姿T,使得整体误差最小化,如下式:
m i n T J ( T ) = ∑ i = 1 N ∣ ∣ z i − T p i ∣ ∣ 2 2 \underset{T}{min}J(T)=\sum_{i = 1} ^N||z_i-Tp_i||^2_2 TminJ(T)=i=1N∣∣ziTpi22
要求解上面的方程,就是要求目标函数J对T的导数,但是由于T所在的变换矩阵群(SO(3))对加法不封闭,无法直接求取,所以我们需要引入一个新的量,通过对该量的计算间接获得对T的求导,这个引入的量就是李代数

2.数学意义

每个李群都有与之对应的李代数。李代数描述了李群的局部性质(局部导数),准确的说是单位元附近的正切空间。

1.李群和李代数的关系

李代数描述了李群的局部性质,每个李群都有相对应的李代数。李代数对应李群的切空间,它描述了李群局部的导数。李群是具有群结构的流形,李代数是李群上单位元处保留李括号的切空间。

如下图所示,这个图可以比较形象的描述李群和李代数之间的关系。

把图中的球面看成李群的流形M,那么把图中的平面看成点 ε \varepsilon ε附近李代数的正切空间 T ε M T_\varepsilon M TεM

这里可以把球面看成相机运行的轨迹,连续且光滑,也就是李群,是光滑流形。所谓流形,简单点理解就是高维空间的超曲面,而光滑流形是带有微分结构的拓扑流形。而切空间,简单理解就是流形上某点处的相切面,当然高维流形其切面也是高维切面。下图就是用了比较容易理解的球面和切平面分别代指流形和切空间。

李群上每个量都是非线性的,而到了对应李代数上就变成了线性了。

李代数(vt、 τ 1 、 \tau_1、 τ1 τ 2 \tau_2 τ2)通过指数映射到李群(exp(vt)、 e x p ( τ 1 ) 、 exp(\tau_1)、 exp(τ1) e x p ( τ 2 exp(\tau_2 exp(τ2))。

反之李群( χ 3 \chi_3 χ3)通过对数映射到李代数( l o g ( χ 3 ) log(\chi_3) log(χ3))。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7EG79hRK-1691211454460)(D:\software\qq\1361173418\FileRecv\MobileFile\0D699F9B50082CA71ED1C9AFEA2E50D1.png)]

至于相关对数和指数的计算在上一篇文章中介绍过,这里就不进行说明了。

本文主要参考《机器人SLAM导航核心技术与实战》
进行说明了。

本文主要参考《机器人SLAM导航核心技术与实战》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

anthony-36

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值