HOW TO CALCULATE THE INVERSE MATRIX QUILKLY AND CORRECTLY

HOW TO CALCULATE THE INVERSE MATRIX QUILKLY AND CORRECTLY

A simple(but not general) approach to calculate it’s inverse matrix of a matrix.

Take the third order matrix as an example: Suppose
A = ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) A=\begin{pmatrix}a_{11}&a_{12}& a_{13}\\a_{21}&a_{22}&a_{23}\\ a_{31}&a_{32}&a_{33}\end{pmatrix} A=a11a21a31a12a22a32a13a23a33
and let X = ( x 1 , x 2 , x 3 ) T , Y = ( y 1 , y 2 , x 3 ) T X=(x_1,x_2,x_3)^T,Y=(y_1,y_2,x_3)^T X=(x1,x2,x3)T,Y=(y1,y2,x3)T
From A X = Y AX=Y AX=Y we have
{ a 11 x 1 + a 12 x 2 + a 13 x 3 = y 1 a 21 x 1 + a 22 x 2 + a 33 x 3 = y 2 a 31 x 1 + a 22 x 2 + a 33 x 3 = y 3 \begin{cases} a_{11}x_1+a_{12}x_2+a_{13}x_3=y_1 \\a_{21}x_1+a_{22}x_2+a_{33}x_3=y_2 \\a_{31}x_1+a_{22}x_2+a_{33}x_3=y_3 \end{cases} a11x1+a12x2+a13x3=y1a21x1+a22x2+a33x3=y2a31x1+a22x2+a33x3=y3
Then represent each of y i y_i yi by x i x_i xi respectively, i = 1 , 2 , 3 i=1,2,3 i=1,2,3,s.t.
{ x 1 = a 11 ′ y 1 + a 12 ′ y 2 + a 13 ′ y 3 x 2 = a 21 ′ y 1 + a 22 ′ y 2 + a 33 ′ y 3 x 3 = a 31 ′ y 1 + a 22 ′ y 2 + a 33 ′ y 3 \begin{cases} x_1=a_{11}^\prime y_1+a_{12}^\prime y_2+a_{13}^\prime y_3 \\x_2=a_{21}^\prime y_1+a_{22}^\prime y_2+a_{33}^\prime y_3 \\x_3=a_{31}^\prime y_1+a_{22}^\prime y_2+a_{33}^\prime y_3\end{cases} x1=a11y1+a12y2+a13y3x2=a21y1+a22y2+a33y3x3=a31y1+a22y2+a33y3
The inverse matrix of A is:
A − 1 = ( a 11 ′ a 12 ′ a 13 ′ a 21 ′ a 22 ′ a 23 ′ a 31 ′ a 32 ′ a 33 ′ ) A^{-1}=\begin{pmatrix}a_{11}^\prime&a_{12}^\prime&a_{13}^\prime\\a_{21}^\prime&a_{22}^\prime&a_{23}^\prime\\a_{31}^\prime&a_{32}^\prime&a_{33}^\prime\end{pmatrix} A1=a11a21a31a12a22a32a13a23a33
Now illustrate the approach by a simple example: let
A = ( 1 0 2 2 1 − 1 3 1 0 ) A=\begin{pmatrix}1&0&2\\2&1&-1\\ 3&1&0\end{pmatrix} A=123011210
let A X = Y AX=Y AX=Y we have
{ x 1 + 2 x 3 = y 1 ( 1 ) 2 x 1 + x 2 − x 3 = y 2 ( 2 ) 3 x 1 + x 2 = y 3 ( 3 ) \begin{cases} x_1+2x_3=y_1 & (1) \\2x_1+x_2-x_3=y_2 &(2)\\3x_1+x_2=y_3 & (3) \end{cases} x1+2x3=y12x1+x2x3=y23x1+x2=y3(1)(2)(3)
( 3 ) − ( 1 ) ⇒ x 1 + x 3 = y 3 − y 2 (4) (3)-(1)\Rightarrow x_1+x_3=y_3-y_2 \tag{4} (3)(1)x1+x3=y3y2(4)
( 1 ) − ( 4 ) ⇒ x 3 = y 1 + y 2 − y 3 (6) (1)-(4)\Rightarrow x_3=y_1+y_2-y_3 \tag{6} (1)(4)x3=y1+y2y3(6)
Combine (4) and (6) we have
x 1 = − y 1 − 2 y 2 + 2 y 3 (7) x_1=-y_1-2y_2+2y_3 \tag{7} x1=y12y2+2y3(7)
Combine (3) and (7) we have
x 2 = 3 y 1 + 6 y 2 − 5 y 3 (8) x_2=3y_1+6y_2-5y_3 \tag{8} x2=3y1+6y25y3(8)
From (6), (7) and (8) we have
{ x 1 = − y 1 − 2 y 2 + 2 y 3 x 2 = 3 y 1 + 6 y 2 − 5 y 3 x 3 = y 1 + y 2 − y 3 \begin{cases} x_1=-y_1-2y_2+2y_3 \\x_2=3y_1+6y_2-5y_3\\x_3=y_1+y_2-y_3\end{cases} x1=y12y2+2y3x2=3y1+6y25y3x3=y1+y2y3
So we conclude that the inverse matrix of A is
A − 1 = ( − 1 − 2 2 3 6 − 5 1 1 − 1 ) A^{-1}=\begin{pmatrix}-1&-2&2\\3&6&-5\\1&1&-1\end{pmatrix} A1=131261251
This approach can calculate the inverse matrices of most matrices.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值