(二)学习笔记:动手学深度学习(数据操作)

本文介绍了PyTorch中的张量操作,包括与numpy的区别、导入方式、创建与初始化、算术运算、广播机制、索引切片、内存管理以及与numpy数组的转换。详细讲解了张量的reshape、连接、按元素运算、逻辑运算符、张量求和等功能,是学习PyTorch入门的重要内容。
摘要由CSDN通过智能技术生成

🏷sec_ndarray

为了能够完成各种数据操作,我们需要某种方法来存储和操作数据。
通常,我们需要做两件重要的事:
(1)获取数据;
(2)将数据读入计算机后对其进行处理。

1.1入门

1.1.1深度学习框架与numpy的区别

深度学习框架又比Numpy的ndarray多一些重要功能:
(1)PyTorch支持GPU计算,可以很好地支持加速计算,而NumPy仅支持CPU计算;
(2)张量类支持自动微分。

1.1.2PyTorch的导入方式

import torch

[张量表示由一个数值组成的数组,这个数组可能有多个维度]。
具有一个轴的张量对应数学上的向量(vector);
具有两个轴的张量对应数学上的矩阵(matrix);
具有两个轴以上的张量没有特殊的数学名称。

1.1.2arange创建一个行向量

这个行向量包含从0开始的前12个整数,它们被默认创建为浮点数。
张量中的每个值都称为张量的元素(element)。
例如,张量x中有12个元素。
除非额外指定,新的张量默认将存储在内存中,并采用基于CPU的计算。

x = torch.arange(12)
x
tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])

1.1.3通过张量的shape属性来访问张量(沿每个轴的长度)的形状

x.shape
torch.Size([12])

如果只想知道张量中元素的总数,即形状的所有元素乘积,可以检查它的大小(size)。
因为这里在处理的是一个向量,所以它的shape与它的size相同。

x.numel()
12

1.1.4reshape函数

例如,可以把张量x从形状为(12,)的行向量转换为形状为(3,4)的矩阵。

X = x.reshape(3, 4)
X
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])

我们可以通过-1来调用此自动计算出维度的功能。
即我们可以用x.reshape(-1,4)x.reshape(3,-1)来取代x.reshape(3,4)

X = x.reshape(-1,4)
X
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]])

1.1.5初始化矩阵的方法

1.1.5.1创建全为0的张量

我们可以创建一个形状为(2,3,4)的张量,其中所有元素都设置为0。代码如下:

torch.zeros((2, 3, 4))
tensor([[[0., 0., 0., 0.],
         [0., 0., 0., 0.],
         [0., 0., 0., 0.]],

        [[0., 0., 0., 0.],
         [0., 0., 0., 0.],
         [0., 0., 0., 0.]]])
1.1.5.2创建全为1的张量

同样,我们可以创建一个形状为(2,3,4)的张量,其中所有元素都设置为1。代码如下:

torch.ones((2, 3, 4))
tensor([[[1., 1., 1., 1.],
         [1., 1., 1., 1.],
         [1., 1., 1., 1.]],

        [[1., 1., 1., 1.],
         [1., 1., 1., 1.],
         [1., 1., 1., 1.]]])
1.1.5.3随机产生张量

有时我们想通过从某个特定的概率分布中随机采样来得到张量中每个元素的值。
例如,当我们构造数组来作为神经网络中的参数时,我们通常会随机初始化参数的值。
以下代码创建一个形状为(3,4)的张量。
其中的每个元素都从均值为0、标准差为1的标准高斯分布(正态分布)中随机采样。

torch.randn(3, 4)
tensor([[ 0.6792,  0.0432,  1.0827, -0.5842],
        [ 1.3343,  1.5926,  0.4610,  1.1808],
        [ 0.7111, -0.6861, -0.0415, -0.6738]])
1.1.5.3通过赋值使张量初始化
torch.tensor([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
tensor([[2, 1, 4, 3],
        [1, 2, 3, 4],
        [4, 3, 2, 1]])

1.2运算符

1.2.1按元素运算(+、-、*、/和**)
x = torch.tensor([1.0, 2, 4, 8])
y = torch.tensor([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x ** y  # **运算符是求幂运算
(tensor([ 3.,  4.,  6., 10.]),
 tensor([-1.,  0.,  2.,  6.]),
 tensor([ 2.,  4.,  8., 16.]),
 tensor([0.5000, 1.0000, 2.0000, 4.0000]),
 tensor([ 1.,  4., 16., 64.]))
1.2.2其它函数运算
torch.exp(x)
tensor([2.7183e+00, 7.3891e+00, 5.4598e+01, 2.9810e+03])
1.2.3张量的连接
X = torch.arange(12, dtype=torch.float32).reshape((3,4))
Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
torch.cat((X, Y), dim=0)
torch.cat((X, Y), dim=1)
(tensor([[ 0.,  1.,  2.,  3.],
         [ 4.,  5.,  6.,  7.],
         [ 8.,  9., 10., 11.],
         [ 2.,  1.,  4.,  3.],
         [ 1.,  2.,  3.,  4.],
         [ 4.,  3.,  2.,  1.]]),
 tensor([[ 0.,  1.,  2.,  3.,  2.,  1.,  4.,  3.],
         [ 4.,  5.,  6.,  7.,  1.,  2.,  3.,  4.],
         [ 8.,  9., 10., 11.,  4.,  3.,  2.,  1.]]))
1.2.4逻辑运算符构建二元张量

X == Y为例:
对于每个位置,如果XY在该位置相等,则新张量中相应项的值为1。
这意味着逻辑语句X == Y在该位置处为真,否则该位置为0。

X == Y
tensor([[False,  True, False,  True],
        [False, False, False, False],
        [False, False, False, False]])
1.2.5张量元素求和
X.sum()
tensor(66.)

1.3广播机制

🏷subsec_broadcasting

在上面的部分中,我们看到了如何在相同形状的两个张量上执行按元素操作。
在某些情况下,[即使形状不同,我们仍然可以通过调用
广播机制(broadcasting mechanism)来执行按元素操作
]。
这种机制的工作方式如下:首先,通过适当复制元素来扩展一个或两个数组,以便在转换之后,两个张量具有相同的形状。
其次,对生成的数组执行按元素操作。

在大多数情况下,我们将沿着数组中长度为1的轴进行广播,如下例子:

a = torch.arange(3).reshape((3, 1))
b = torch.arange(2).reshape((1, 2))
a, b
(tensor([[0],
         [1],
         [2]]),
 tensor([[0, 1]]))

由于ab分别是 3 × 1 3\times1 3×1 1 × 2 1\times2 1×2矩阵,如果让它们相加,它们的形状不匹配。
我们将两个矩阵广播为一个更大的 3 × 2 3\times2 3×2矩阵,如下所示:矩阵a将复制列,
矩阵b将复制行,然后再按元素相加。

a + b
tensor([[0, 1],
        [1, 2],
        [2, 3]])

1.4索引和切片

1.4.1选择元素

X[-1], X[1:3]
(tensor([ 8.,  9., 10., 11.]),
 tensor([[ 4.,  5.,  6.,  7.],
         [ 8.,  9., 10., 11.]]))

1.4.2修改单个元素

X[1, 2] = 9
X
tensor([[ 0.,  1.,  2.,  3.],
        [ 4.,  5.,  9.,  7.],
        [ 8.,  9., 10., 11.]])

1.4.2修改多个元素

例如,[0:2, :]访问第1行和第2行,其中“:”代表沿轴1(列)的所有元素。
虽然我们讨论的是矩阵的索引,但这也适用于向量和超过2个维度的张量。

X[0:2, :] = 12
X
tensor([[12., 12., 12., 12.],
        [12., 12., 12., 12.],
        [ 8.,  9., 10., 11.]])

1.5节省内存

1.5.1浪费内存的实例

[运行一些操作可能会导致为新结果分配内存]。
例如,如果我们用Y = X + Y,我们将取消引用Y指向的张量,而是指向新分配的内存处的张量。

在下面的例子中,我们用Python的id()函数演示了这一点,
它给我们提供了内存中引用对象的确切地址。
运行Y = Y + X后,我们会发现id(Y)指向另一个位置。
这是因为Python首先计算Y + X,为结果分配新的内存,然后使Y指向内存中的这个新位置。

before = id(Y)
Y = Y + X
id(Y) == before
False

这是不可取的,原因有两个:
(1)我们不想总是不必要地分配内存。在机器学习中,我们可能有数百兆的参数,并且在一秒内多次更新所有参数。通常情况下,我们希望原地执行这些更新。
(2)如果我们不原地更新,其他引用仍然会指向旧的内存位置,
这样我们的某些代码可能会无意中引用旧的参数。

1.5.2 原地操作的方法

我们可以使用切片表示法将操作的结果分配给先前分配的数组,例如Y[:] = <expression>
为了说明这一点,我们首先创建一个新的矩阵Z,其形状与另一个Y相同,
使用zeros_like来分配一个全 0 0 0的块。

Z = torch.zeros_like(Y)
print('id(Z):', id(Z))
Z[:] = X + Y
print('id(Z):', id(Z))
id(Z): 139803199670464
id(Z): 139803199670464

[如果在后续计算中没有重复使用X,我们也可以使用X[:] = X + YX += Y来减少操作的内存开销。]

before = id(X)
X += Y
id(X) == before
True

1.6转换为其他Python对象

1.6.1torch张量和numpy数组转化

将深度学习框架定义的张量[转换为NumPy张量(ndarray]很容易,反之也同样容易。
torch张量和numpy数组将共享它们的底层内存,就地操作更改一个张量也会同时更改另一个张量。

A = X.numpy()
B = torch.tensor(A)
type(A), type(B)
(numpy.ndarray, torch.Tensor)

1.6.2torch张量和Python标量的转化

要(将大小为1的张量转换为Python标量),我们可以调用item函数或Python的内置函数。

a = torch.tensor([3.5])
a, a.item(), float(a), int(a)
(tensor([3.5000]), 3.5, 3.5, 3)

小结

  • 深度学习存储和操作数据的主要接口是张量( n n n维数组)。它提供了各种功能,包括基本数学运算、广播、索引、切片、内存节省和转换其他Python对象。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卡拉比丘流形

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值