<“CBAM:卷积块注意模块”>
摘要
我们提出了卷积块注意模块(Convolutional Block Attention Module, CBAM),这是一种简单而有效的前馈卷积神经网络注意模块。给定一个中间特征图,我们的模块沿着两个独立的维度(通道和空间)顺序地推断注意图, 然后将注意图乘以输入特征图以进行自适应特征细化。由于CBAM是一个 轻量级的通用模块,它可以无缝集成到任何CNN架构中,开销可以忽略不 计,并且可以与基础cnn一起进行端到端训练。我们通过在ImageNet-1K、 MS COCO检测和VOC 2007检测数据集上进行大量实验来验证我们的CBAM。 我们的实验表明,不同模型在分类和检测性能上有一致的改进,证明了 CBAM的广泛适用性。
📊 研究背景
研究方法
结果
“我们的主要贡献有三方面。 1. 我们提出了一个简单而有效的注意力模块(CBAM),可以广泛应用于提高cnn 的表征能力。 2. 我们通过广泛的对照研究验证了注意力模块的有效性。 3. 通过插入我们的轻量级模块,我们验证了各种网络的性能在多个基准测试 (ImageNet-1K, MS COCO和VOC 2007)上得到了极大的提高。”
实验
结论
“我们提出了卷积块注意模块(convolutional block attention module, CBAM),这是一种 提高CNN网络表征能力的新方法。我们将基于注意力的特征细化应用于两个不同的 模块,通道和空间,并在保持较小开销的同时实现了相当大的性能改进。对于通道注 意力,我们建议使用最大池特征和平均池特征,从而产生比SE[28]更精细的注意力。 我们通过利用空间注意力进一步提高了性能。我们的最后一个模块(CBAM)学习在哪 里强调或抑制什么,并有效地改进中间特征。为了验证其有效性,我们对各种最先进 的模型进行了广泛的实验,并确认CBAM在三个不同的基准数据集(ImageNet-1K、 MS COCO和VOC 2007)上优于所有基线。此外,我们可视化了该模块如何准确地推 断给定的输入图像。有趣的是,我们观察到我们的模块诱导网络正确地聚焦于目标对 象。我们希望CBAM成为各种网络架构的重要组成部分。”