tf的数据统计(张量特性)

tf的数据统计

1. 范数

  • 1范数:元素绝对值的和
  • 2范数:元素平方和开根号
  • 无穷范数:元素中最大值的绝对值
  • 用tf.norm(a,ord=x,axis=y)函数来实现范数,其中x代表为几范数,y代表在第几维上取范数(第0维是按列取,第一维是按行取),ord和axis可不写(即默认为在所有维上取2范数)
    在这里插入图片描述

2. 最大/最小/均值

  • 最大/最小/均值分别由tf.reduce_max(a,axis=x),tf.reduce_min(a,axis=x),tf.reduce_mean(a,axis=x)函数实现,其中x为具体在哪一个维度上求最大/最小/均值,axis不说明(即默认为第0维)。
    在这里插入图片描述

3. 最大/最小值位置

  • 最大/最小值位置分别由tf.argmax(a,axis=x),tf.argmax(b,axis=x)函数实现,其中x为具体在哪一个维度上求最大/最小/均值,axis不说明(即默认为第0维)。
    在这里插入图片描述

4. 元素对比

  • 将两个tensor按对应位置进行比较,如果元素大小一样,返回True,不一样返回False。利用tf.equal(a,b)实现
    在这里插入图片描述

5. 去除重复元素

  • 去除tensor中重复的元素,使用tf.unique(a)函数。在去除重复元素时会保留重复元素的索引,因而可以用tf.gather恢复出原数据。
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值