如何提高学习效率、优化策略,并解决复杂的图结构相关问题?或许你可以考虑:GNN+强化学习。
GNN结合强化学习是当前的热门创新方向,它通过利用GNN在图形数据上的强大表示能力与强化学习在决策制定中的优势,不仅能够有效处理复杂的图结构数据,还能解决需要序列决策的实际问题,给我们提供解题的新思路。
但这种策略也存在挑战,如需大量数据、计算资源等。目前的研究也着力于改善这一结合的有效性和效率。比如最新提出的MAG-GNN,利用强化学习来提高GNN的效率和表达力,在减少计算复杂度的同时,也能提升模型的性能。
今天我从这些最新研究中挑选了12个高质量成果供同学们参考学习,开源的代码也整理了,帮助各位寻找灵感、打磨论文。
论文原文+开源代码需要的同学看文末
MAG-GNN: Reinforcement Learning Boosted Graph Neural Network
方法:本文提出了一种基于强化学习的图神经网络方法,称为MAG-GNN,通过使用强化学习(RL)来定位具有区分性的子图集合,从而降低了子图GNN的计算复杂度,同时保持了良好的表达能力。实验结果表明,MAG-GNN在多个数据集上取得了与最先进方法相竞争的性能,并且比许多子图GNNs取得了更好的效果。