Imu+Wheel融合
文章目录
1 轮速计
1.1 航迹递推
常见的轮速计积分的方式有三种:欧拉积分、二阶Runge-Kutta
积分、群空间闭式积分。在我们代码中,分别实现了前面两种递归公式!
1.1.1 基于欧拉法
误差主要来源于平移积分过程中认为角度恒定。直线运动时不受影响,以及 Δt 很小时误差影响也较小。
[ θ t + 1 x t + 1 y t + 1 ] = [ θ t x t y t ] + [ ω Δ t cos ( θ t ) ∗ v x Δ t sin ( θ t ) ∗ v x Δ t ] \begin{bmatrix}\theta_{t+1}\\x_{t+1}\\y_{t+1}\end{bmatrix}=\begin{bmatrix}\theta_t\\x_t\\y_t\end{bmatrix}+\begin{bmatrix}\omega\Delta t\\\cos\left(\theta_t\right)*v_x\Delta t\\\sin\left(\theta_t\right)*v_x\Delta t\end{bmatrix} θt+1xt+1yt+1 = θtxtyt + ωΔtcos(θt)∗vxΔtsin(θt)∗vxΔt
代码实现:下面旋转矩阵展开就是上面的形式。手推即可验证,有时间补充
// 方法1:利用旋转矩阵进行递推更新
const Eigen::Matrix3d delta_R = Eigen::AngleAxisd(u_now(1), Eigen::Vector3d::UnitZ()).toRotationMatrix();
const Eigen::Vector3d delta_p = Eigen::Vector3d(u_now(0), 0., 0.);
R_G_O = old_R_G_O * delta_R; // R_Go(k+1) = R_Go(k)*delta_R
p_G_O = old_p_G_O + old_R_G_O * delta_p;
x_n = x_p + u_now(1); // theta
1.1.2 基于二阶Runge-Kutta积分
平移积分过程中认为角度为运动前后的均值,误差比欧拉积分小一点
[ θ t + 1 x t + 1 y t + 1 ] = [ θ t x t y t ] + [ ω Δ t cos ( θ t + ω Δ t 2 ) v x Δ t sin ( θ t + ω Δ t 2 ) v x Δ t ] \begin{bmatrix}\theta_{t+1}\\x_{t+1}\\y_{t+1}\end{bmatrix}=\begin{bmatrix}\theta_t\\x_t\\y_t\end{bmatrix}+\begin{bmatrix}\omega\Delta t\\\cos{(\theta_t+\frac{\omega\Delta t}2)}v_x\Delta t\\\sin{(\theta_t+\frac{\omega\Delta t}2)}v_x\Delta t\end{bmatrix} θt+1xt+1yt+1 = θtxtyt + ωΔtcos(θt+2ωΔt)vxΔtsin(θt+2ωΔt)vxΔt
代码实现:
// 方法2
x_now(0) = x_pre(0) + u_now(0) * ::cos( x_pre(2) + 0.5 * u_now(1) ); // x
x_now(1) = x_pre(1) + u_now(0) * ::sin( x_pre(2) + 0.5 * u_now(1) ); // y
x_now(2) = x_pre(2) + u_now(1); // theta
1.1.3 群空间闭式积分
u
就是Δp
[
θ
t
+
1
p
t
+
1
]
=
[
θ
t
p
t
]
+
[
α
R
(
θ
t
)
A
(
α
)
u
]
\begin{bmatrix}\theta_{t+1}\\\mathbf{p}_{t+1}\end{bmatrix}=\begin{bmatrix}\theta_{t}\\\mathbf{p}_{t}\end{bmatrix}+\begin{bmatrix}\alpha\\\mathbf{R}(\theta_{t})\mathbf{A}(\alpha)\mathbf{u}\end{bmatrix}
[θt+1pt+1]=[θtpt]+[αR(θt)A(α)u]
其中
A
(
α
)
\mathbf{A}(\alpha)
A(α)
=
[
sin
(
α
)
α
−
1
−
cos
(
α
)
α
1
−
cos
(
α
)
α
sin
(
α
)
α
]
=\begin{bmatrix}\frac{\sin(\alpha)}{\alpha}&-\frac{1-\cos(\alpha)}{\alpha}\\\frac{1-\cos(\alpha)}{\alpha}&\frac{\sin(\alpha)}{\alpha}\end{bmatrix}
=[αsin(α)α1−cos(α)−α1−cos(α)αsin(α)]
代码实现:
// 方法3
const Eigen::Matrix3d A_old_yaw = xxx;
const Eigen::Matrix3d delta_R = Eigen::AngleAxisd(u_now(1), Eigen::Vector3d::UnitZ()).toRotationMatrix();
const Eigen::Vector3d delta_p = Eigen::Vector3d(u_now(0), 0., 0.);
R_G_O = old_R_G_O * delta_R; // R_Go(k+1) = R_Go(k)*delta_R
p_G_O = old_p_G_O + old_R_G_O * A_old_yaw * delta_p;
x_n = x_p + u_now(1); // theta
1.2 雅可比计算
如果只有
x y yaw
三个状态量,雅可比计算如下:
F 3 × 3 = [ 1 0 − Δ s k s i n ( θ k + 1 2 Δ θ k ) 0 1 Δ s k c o s ( θ k + 1 2 Δ θ k ) 0 0 1 ] F_{3\times3}=\begin{bmatrix}1&0&-\Delta s_ksin(\theta_k+\frac12\Delta\theta_k)\\0&1&\Delta s_kcos(\theta_k+\frac12\Delta\theta_k)\\0&0&1\end{bmatrix} F3×3= 100010−Δsksin(θk+21Δθk)Δskcos(θk+21Δθk)1
实际系统是三维的,所以共6个自由度,即由6个变量组成:
// 计算状态雅可比矩阵
F = Matrix6::Identity();
F(3, 2) = -u_now(0) * std::sin(x_p);
F(4, 2) = u_now(0) * std::cos(x_p);
分别对 r p yaw x y z
进行求导
F
=
[
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
−
u
now
(
0
)
sin
(
x
p
)
1
0
0
0
0
u
now
(
0
)
cos
(
x
p
)
0
1
0
0
0
0
0
0
0
]
\begin{equation} F = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -u_{\text{now}}(0) \sin(x_p) & 1 & 0 & 0 \\ 0 & 0 & u_{\text{now}}(0) \cos(x_p) & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} \end{equation}
F=
100000010000001−unow(0)sin(xp)unow(0)cos(xp)0000100000010000000
// 更新状态向量
x_now(0) = x_pre(0); // 保持滚转角 r 不变
x_now(1) = x_pre(1); // 保持俯仰角 p 不变
x_now(2) = x_pre(2) + u_now(1); // 更新偏航角 y
x_now(3) = x_pre(3) + u_now(0) * std::cos(x_pre(2)); // 更新位置 x
x_now(4) = x_pre(4) + u_now(0) * std::sin(x_pre(2)); // 更新位置 y
x_now(5) = x_pre(5); // 保持位置 z 不变
2 IMU观测更新
只使用imu测出的角度增量作为观测值,而且观测方程刚好是线性的!不需要再次计算雅可比矩阵
2D: x y yaw
h ( X k ) = H X k = ( 0 , 0 , 1 ) [ x k y k θ k ] = θ k \begin{aligned}h(X_k)&=HX_k\\&=(0,0,1)\begin{bmatrix}x_k\\y_k\\\theta_k\end{bmatrix}\\&=\theta_k\end{aligned} h(Xk)=HXk=(0,0,1) xkykθk =θk
3D:r p yaw x y z
H << 0, 0, 1, 0, 0 , 0;
标准EKF过程
double old_angle = x_p; // 获取角度值
double new_angle = x_n;
DataType h = new_angle - old_angle; // 预测delta_theta
// 观测误差----测试把误差反过来会怎么样(会跑飞!)---常规EKF公式都是 残差r = 观测z-预测CX
double error = z - h;
// 卡尔曼增益
double S = H * P_now * H.transpose() + R;
Matrix6x1 K = P_now * H.transpose() * (1 / S);
// 状态更新
const Eigen::Matrix3d delta_R = Eigen::AngleAxisd(K[2] * error, Eigen::Vector3d::UnitZ()).toRotationMatrix();
R_G_O = R_G_O * delta_R; // R_Go(k+1) = R_Go(k)*delta_R
p_G_O[0] += K[3] * error;
p_G_O[1] += K[4] * error;
x_n += K[2] * error;
3 数据处理
对于imu和wheel的处理(有时间再补代码)
① 简单处理:找到wheel最近的imu数据
② 线性插值处理,更精确!