连续时间系统的性能分析(1)-控制系统性能指标及一二阶分析

本文详细介绍了控制系统在时域分析中的关键性能指标,包括上升时间、峰值时间、最大超调量、调整时间和延迟时间,并探讨了它们的影响因素。此外,还深入分析了一阶和二阶系统的时域响应,以及欠阻尼系统的暂态性能,讨论了阻尼系数、自然频率对系统性能的作用。通过对这些概念的理解,读者能够更好地评估和设计控制系统的动态性能。
摘要由CSDN通过智能技术生成

自控原理学习笔记
自控原理学习笔记专栏



前言

在控制理论中,对控制系统的分析可分为时域分析和频域分析两类。频域分析是通过给系统输入不同频率的正弦输入信号,分析系统稳态响应;时域分析是通过研究系统的时间响应来评价系统的性能。本章主要是通过研究系统的时域性能和频域性能,时域响应是求出系统具体的响应波形,而频率分析只能求出系统响应的特征信息。

1.控制系统性能指标

微信图片_20220401201951

1.1暂态性能

1.1.1上升时间 t r t_r tr——rise time

稳态值从10%——>90%所需时间;欠阻尼:0100%,过阻尼:1090%

1.1.2 峰值时间 t p t_p tp——peak time

响应达到超调量第一个峰值时间

1.1.3 最大超调量 M p M_p Mp——maximum percent overshoot

第一次超过最终值占最终值百分比
M p = y ( t p ) − y ( ∞ ) y ( ∞ ) × 100 % 非零情况: M p = y ( t p ) − y ( ∞ ) y ( ∞ ) − y ( 0 ) × 100 % M_p=\frac{y(t_p)-y(\infty)}{y(\infty)}\times100\%\\ {\color{Red} \text{非零情况:}M_p=\frac{y(t_p)-y(\infty)}{y(\infty)-y(0)}\times100\%} Mp=y()y(tp)y()×100%非零情况:Mp=y()y(0)y(tp)y()×100%
一般响应越快,超调量越大。

1.1.4 调整时间 t s t_s ts——settling time

当稳态允许误差达到 2 % ∼ 5 % 2\% \sim5\% 2%5%

1.1.5 延迟时间 t d t_d td——delay time

响应曲线达到 1 2 \frac{1}{2} 21的稳态值所需时间

1.1.6 振荡次数
1.1.7衰减比

1.2 稳态性能

1.2.1稳态误差—— e s s e_{ss} ess

稳态系统的稳态响应的实际值与期望值之间的误差。

2. 典型一阶时域分析

2.1 定义

典型一阶系统框图可以化简为如下形式。

image-20220404104416888

结构特征:

  1. 单位负反馈
  2. 开环传递函数又一个积分环节,开环增益为时间常数倒数 K = 1 T K=\frac{1}{T} K=T1

2.2 典型环节的响应

  1. 单位阶跃响应- r ( t ) = ϵ ( t ) , R ( s ) = 1 s r(t)=\epsilon(t),R(s)=\frac{1}{s} r(t)=ϵ(t),R(s)=s1

    输出为:
    y ( t ) = 1 − e − t T → 1 e s s = lim ⁡ t → ∞ e ( t ) = 0 y(t)=1-\mathrm{e}^{-\frac{t}{T}} \rightarrow 1\\ e_{ss}=\lim_{t\rightarrow\infty}e(t)=0 y(t)=1eTt1ess=tlime(t)=0
    稳态误差为:

  2. 单位脉冲响应- r ( t ) = δ ( t ) , R ( s ) = 1 r(t)=\delta(t),R(s)=1 r(t)=δ(t),R(s)=1

    输出为:
    y ( t ) = 1 T e − t / T → 0 y(t)=\frac{1}{T} \mathrm{e}^{-t / T} \rightarrow 0\\ y(t)=T1et/T0
    稳态误差为:
    e ( t ) = r ( t ) − y ( t ) = δ ( t ) − T e − 1 T t e s s = lim ⁡ t → ∞ e ( t ) = δ ( t ) − T e(t)=r(t)-y(t)=\delta(t)-Te^{-\frac{1}{T}t}\\ e_{ss}=\lim_{t\rightarrow\infty}e(t)=\delta(t)-T e(t)=r(t)y(t)=δ(t)TeT1tess=tlime(t)=δ(t)T

  3. 单位斜坡响应- r ( t ) = t , R ( s ) = 1 s 2 r(t)=t,R(s)=\frac{1}{s^2} r(t)=t,R(s)=s21

    输出为:
    y ( t ) = t − T + T e − t / T → t − T y(t)=t-T+T \mathrm{e}^{-t / T} \rightarrow t-T\\ y(t)=tT+Tet/TtT
    稳态误差:
    e ( t ) = r ( t ) − y ( t ) = T ( 1 − e − 1 T t ) e s s = lim ⁡ t → ∞ e ( t ) = T e(t)=r(t)-y(t)=T(1-e^{-\frac{1}{T}t})\\ e_{ss}=\lim_{t\rightarrow\infty}e(t)=T e(t)=r(t)y(t)=T(1eT1t)ess=tlime(t)=T

  4. 单位加速度响应- r ( t ) = 1 2 t 2 , R ( s ) = 1 s 3 r(t)=\frac{1}{2}t^2,R(s)=\frac{1}{s^3} r(t)=21t2,R(s)=s31

    输出为:
    y ( t ) = 1 2 t 2 − T t + T 2 ( 1 − e − 1 T t ) → 1 2 t 2 − T t + T 2 y(t)=\frac{1}{2} t^{2}-T t+T^{2}\left(1-\mathrm{e}^{-\frac{1}{T} t}\right) \rightarrow \frac{1}{2} t^{2}-T t+T^{2} y(t)=21t2Tt+T2(1eT1t)21t2Tt+T2
    稳态误差:
    e ( t ) = r ( t ) − y ( t ) = T t − T 2 ( 1 − e − 1 T t ) e s s = lim ⁡ t → ∞ e ( t ) = ∞ e(t)=r(t)-y(t)=Tt-T^2(1-e^{-\frac{1}{T}t})\\ e_{ss}=\lim_{t\rightarrow\infty}e(t)=\infty e(t)=r(t)y(t)=TtT2(1eT1t)ess=tlime(t)=
    下图分别为单位冲激响应,单位阶跃响应,单位斜坡响应的响应函数,可以看到单位响应各个环节之若呈现积分/微分关系,则他们的输出也曾积分/微分环节。

image-20220404111136529

3. 典型二阶时域分析

3.1 定义

  1. 传递函数:
    Y ( s ) R ( s ) = ω n 2 s 2 + 2 ζ ω n s + ω n 2 \frac{Y(s)}{R(s)}=\frac{\omega_{\mathrm{n}}^{2}}{s^{2}+2 \zeta \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}} R(s)Y(s)=s2+2ζωns+ωn2ωn2

  2. 典型结构图:
    image-20220404114220210

  3. 结构特点:

    (1)单位负反馈结构

    (2)开环传递函数只有一个积分环节,开环增益为 K = w n / ( 2 ζ ) K=w_n/(2\zeta) K=wn/(2ζ)

3.2 典型环节的响应

  1. 斜坡响应

    输出为:
    Y ( s ) = 1 s 2 ⋅ ω n 2 s 2 + 2 ζ ω n s + ω n 2 Y(s)=\frac{1}{s^{2}} \cdot \frac{\omega_{\mathrm{n}}^{2}}{s^{2}+2 \zeta \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}} Y(s)=s21s2+2ζωns+ωn2ωn2
    稳态误差:
    E ( s ) = R ( s ) − Y ( s ) = 1 s 2 − 1 s 2 ⋅ ω n 2 s 2 + 2 ζ ω n s + ω n 2 = 1 s ⋅ s + 2 ζ ω n s 2 + 2 ζ ω n s + ω n 2 e s s = lim ⁡ t → ∞ e ( t ) = lim ⁡ s → 0 s E ( s ) = lim ⁡ s → 0 s + 2 ζ ω n s 2 + 2 ζ ω n s + ω n 2 = 2 ζ ω n \begin{aligned} E(s) &=R(s)-Y(s)=\frac{1}{s^{2}}-\frac{1}{s^{2}} \cdot \frac{\omega_{\mathrm{n}}^{2}}{s^{2}+2 \zeta \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}} \\ &=\frac{1}{s} \cdot \frac{s+2 \zeta \omega_{\mathrm{n}}}{s^{2}+2 \zeta \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}} \\ e_{ss}=\lim _{t \rightarrow \infty} e(t) &=\lim _{s \rightarrow 0} s E(s)=\lim _{s \rightarrow 0} \frac{s+2 \zeta \omega_{\mathrm{n}}}{s^{2}+2 \zeta \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}}=\frac{2 \zeta}{\omega_{\mathrm{n}}} \end{aligned} E(s)ess=tlime(t)=R(s)Y(s)=s21s21s2+2ζωns+ωn2ωn2=s1s2+2ζωns+ωn2s+2ζωn=s0limsE(s)=s0lims2+2ζωns+ωn2s+2ζωn=ωn2ζ

  2. 暂态性能与阻尼系数及自然频率角频率关系

    ζ > 1 \zeta>1 ζ>1:过阻尼

    ζ = 1 \zeta=1 ζ=1:临界阻尼

    0 < ζ < 1 0<\zeta<1 0<ζ<1:欠阻尼,具有良好的暂态性能,衰减振荡.

image-20220404113904536

4. 欠阻尼的暂态性能

4.1 以单位阶跃响应为例:

Y ( s ) = 1 s ⋅ ω n 2 s 2 + 2 ζ ω n s + ω n 2 = 1 s − s + ζ ω n ( s + ζ ω n ) 2 + ( 1 − ζ 2 ) ω n 2 − ζ ( s + ζ ω n ) 2 + ( 1 − ζ 2 ) ω n 2 \begin{aligned} Y(s) =&\frac{1}{s} \cdot \frac{\omega_{\mathrm{n}}^{2}}{s^{2}+2 \zeta \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}} \\ = & \frac{1}{s}-\frac{s+\zeta \omega_{\mathrm{n}}}{\left(s+\zeta \omega_{\mathrm{n}}\right)^{2}+\left(1-\zeta^{2}\right) \omega_{\mathrm{n}}^{2}}-\frac{\zeta}{\left(s+\zeta \omega_{\mathrm{n}}\right)^{2}+\left(1-\zeta^{2}\right) \omega_{\mathrm{n}}^{2}} \\ \end{aligned} Y(s)==s1s2+2ζωns+ωn2ωn2s1(s+ζωn)2+(1ζ2)ωn2s+ζωn(s+ζωn)2+(1ζ2)ωn2ζ

y ( t ) = 1 − e − ζ ω n t [ cos ⁡ ( 1 − ζ 2 ω n t ) + ζ 1 − ζ 2 sin ⁡ ( 1 − ζ 2 ω n t ) ] = 1 − e − ζ ω n t 1 − ζ 2 [ 1 − ζ 2 cos ⁡ ( 1 − ζ 2 ω n t ) + ζ sin ⁡ ( 1 − ζ 2 ω n t ) ] = 1 − e − ζ ω n t 1 − ζ 2 [ sin ⁡ ( arccos ⁡ ζ ) cos ⁡ ( 1 − ζ 2 ω n t ) + cos ⁡ ( arccos ⁡ ζ ) sin ⁡ ( 1 − ζ 2 ω n t = 1 − e − ζ ω n t 1 − ζ 2 sin ⁡ ( 1 − ζ 2 ω n t + arccos ⁡ ζ ) \begin{aligned} y(t)&=1-\mathrm{e}^{-\zeta \omega_{\mathrm{n}} t}\left[\cos \left(\sqrt{1-\zeta^{2}} \omega_{\mathrm{n}} t\right)+\frac{\zeta}{\sqrt{1-\zeta^{2}}} \sin \left(\sqrt{1-\zeta^{2}} \omega_{\mathrm{n}} t\right)\right] \\ &=1-\frac{\mathrm{e}^{-\zeta \omega_{\mathrm{n}} t}}{\sqrt{1-\zeta^{2}}}\left[\sqrt{1-\zeta^{2}} \cos \left(\sqrt{1-\zeta^{2}} \omega_{\mathrm{n}} t\right)+\zeta \sin \left(\sqrt{1-\zeta^{2}} \omega_{\mathrm{n}} t\right)\right] \\ &=1-\frac{\mathrm{e}^{-\zeta \omega_{\mathrm{n}} t}}{\sqrt{1-\zeta^{2}}}\left[\sin (\arccos \zeta) \cos \left(\sqrt{1-\zeta^{2}} \omega_{\mathrm{n}} t\right)+\cos (\arccos \zeta) \sin \left(\sqrt{1-\zeta^{2} \omega_{\mathrm{n}} t}\right.\right. \\ &=1-\frac{\mathrm{e}^{-\zeta \omega_{\mathrm{n}} t}}{\sqrt{1-\zeta^{2}}} \sin \left(\sqrt{1-\zeta^{2}} \omega_{\mathrm{n}} t+\arccos \zeta\right) \\ \end{aligned} y(t)=1eζωnt[cos(1ζ2 ωnt)+1ζ2 ζsin(1ζ2 ωnt)]=11ζ2 eζωnt[1ζ2 cos(1ζ2 ωnt)+ζsin(1ζ2 ωnt)]=11ζ2 eζωnt[sin(arccosζ)cos(1ζ2 ωnt)+cos(arccosζ)sin(1ζ2ωnt =11ζ2 eζωntsin(1ζ2 ωnt+arccosζ)

记 衰 减 系 数 σ = ζ w n , 阻 尼 振 荡 频 率 w d = 1 − ζ 2 w n , cos ⁡ β = ζ , sin ⁡ β = 1 − ζ 2 , 其 中 β 称 为 阻 尼 角 记衰减系数\sigma=\zeta w_n,阻尼振荡频率w_d=\sqrt {1-\zeta^2}w_n,\cos\beta=\zeta,\sin\beta=\sqrt{1-\zeta^2},其中\beta称为阻尼角 σ=ζwn,wd=1ζ2 wn,cosβ=ζ,sinβ=1ζ2 ,β

4.2 暂态性能指标

  1. 峰值时间
    令 y ˙ ( t ) = 0 , 即 e − σ t ω n 1 − ζ 2 sin ⁡ ( ω d t ) = 0 得 到 : t = k π ω d , k = 1 , 2 , ⋯ 第 一 个 峰 值 的 时 间 为 t p = π ω d = π ω n 1 − ζ 2 \begin{aligned} 令 \dot{y}(t) & = 0 , 即 \\ &\frac{\mathrm{e}^{-\sigma t} \omega_{\mathrm{n}}}{\sqrt{1-\zeta^{2}}} \sin \left(\omega_{\mathrm{d}} t\right) = 0\\ 得到:\\ &t = \frac{k \pi}{\omega_{d}}, k = 1,2, \cdots\\ 第一个峰值的时间为\\ t_{\mathrm{p}} & = \frac{\pi}{\omega_{\mathrm{d}}} = \frac{\pi}{\omega_{\mathrm{n}} \sqrt{1-\zeta^{2}}} \end{aligned} y˙(t):tp=0,1ζ2 eσtωnsin(ωdt)=0t=ωdkπ,k=1,2,=ωdπ=ωn1ζ2 π

  2. 最大超调量

    把峰值时间代入定义式中进行计算
    M p = e − π ζ 1 − ζ 2 × 100 % M_p=e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}\times100\% Mp=e1ζ2 πζ×100%

  3. 调整时间(5%)

    工程上常采用包络线代替实际曲线估算,令 e − ζ w n t 1 − ζ 2 = 0.05 \frac{e^{-\zeta w_nt}}{\sqrt{1-\zeta^2}}=0.05 1ζ2 eζwnt=0.05
    t s = − ln ⁡ ( 0.05 1 − ζ 2 ) ζ ω n 当 0 < ζ < 0.8 时 , 近 似 有 t s = 3 ∼ 3.5 ζ ω n t_{\mathrm{s}}=-\frac{\ln \left(0.05 \sqrt{1-\zeta^{2}}\right)}{\zeta \omega_{\mathrm{n}}}\\ 当0<\zeta<0.8时,近似有\\ t_{\mathrm{s}}=\frac{3 \sim 3.5}{\zeta \omega_{\mathrm{n}}}\\ ts=ζωnln(0.051ζ2 )0<ζ<0.8,ts=ζωn33.5

  4. 上升时间
    t r = π − β ω d = π − β ω n 1 − ζ 2 t_{\mathrm{r}}=\frac{\pi-\beta}{\omega_{\mathrm{d}}}=\frac{\pi-\beta}{\omega_{\mathrm{n}} \sqrt{1-\zeta^{2}}}\\ tr=ωdπβ=ωn1ζ2 πβ

令 y ( t ) = 1 − e − σ t 1 − ζ 2 sin ⁡ ( ω d t + β ) = 1 , 就 可 以 得 到 t r = π − β ω d 。 令 y(t)=1-\frac{e^{-\sigma t}}{\sqrt{1-\zeta^{2}}} \sin \left(\omega_{\mathrm{d}} t+\beta\right)=1 , 就可以得到 t_{\mathrm{r}}=\frac{\pi-\beta}{\omega_{\mathrm{d}}} 。 y(t)=11ζ2 eσtsin(ωdt+β)=1,tr=ωdπβ

4.3 总结

  1. ζ \zeta ζ越小,超调量越大,平稳性越差,调整时间越长
  2. ζ \zeta ζ过大,系统响应迟钝,调整时间时间也长,快速性差
  3. 通常取 ζ \zeta ζ为0.707
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Miracle Fan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值