SwinIR: Image Restoration Using Swin Transformer
简介
论文地址:SwinIR: Image Restoration Using Swin Transformer
代码:SwinIR
本文提出了一个基于swin transformer的图像超分模型swinIR。其中SwinIR分为三部分:浅层特征提取、深层特征提取和高质量图像重建模块。
现阶段问题
vanilla transformer通过注意力捕获了全局依赖,但是它是将图片达成patch进行输入,这样在图像超分领域出现了两个问题。
- 重建图像在每个小块附近存在边界伪影
- 边界像素会丢失信息。
虽然通过patch重叠,能进行缓解,但是也带来额外计算负担。
主要贡献
将Swin Transformer应用于low-level任务中。
网络框架
采用shallow feature进行浅层特征提取后,输入到RTSB(多个swin transformer残差块)进行深层的特征提取,最后使用高质量图像重建模块(卷积和上采样操作)进行图像重建。


本文介绍了一种基于SwinTransformer的图像超分辨率模型SwinIR,它解决了vanillaTransformer在图像超分中的全局依赖问题和边界伪影。模型包括浅层特征提取、深层特征提取(通过RTSB和残差结构)及高质量图像重建模块,使用PixelShuffle进行上采样。实验表明,结合不同损失函数,SwinIR在图像恢复效果上表现出色。
最低0.47元/天 解锁文章
973

被折叠的 条评论
为什么被折叠?



