SwinIR: 基于Swin Transformer的图像重建网络

本文介绍了一种基于SwinTransformer的图像超分辨率模型SwinIR,它解决了vanillaTransformer在图像超分中的全局依赖问题和边界伪影。模型包括浅层特征提取、深层特征提取(通过RTSB和残差结构)及高质量图像重建模块,使用PixelShuffle进行上采样。实验表明,结合不同损失函数,SwinIR在图像恢复效果上表现出色。

SwinIR: Image Restoration Using Swin Transformer

简介

论文地址:SwinIR: Image Restoration Using Swin Transformer

代码:SwinIR

​ 本文提出了一个基于swin transformer的图像超分模型swinIR。其中SwinIR分为三部分:浅层特征提取、深层特征提取和高质量图像重建模块。

现阶段问题

vanilla transformer通过注意力捕获了全局依赖,但是它是将图片达成patch进行输入,这样在图像超分领域出现了两个问题。

  • 重建图像在每个小块附近存在边界伪影
  • 边界像素会丢失信息。

虽然通过patch重叠,能进行缓解,但是也带来额外计算负担。

主要贡献

​ 将Swin Transformer应用于low-level任务中。

网络框架

​ 采用shallow feature进行浅层特征提取后,输入到RTSB(多个swin transformer残差块)进行深层的特征提取,最后使用高质量图像重建模块(卷积和上采样操作)进行图像重建。

2023-11-22_09-50-50

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Miracle Fan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值