纵向数据中抑郁检测与预测的深度多任务学习

本人cv抑郁识别方向的硕士,目前应老师要求,不可避免的要看每周看一些抑郁识别的文章,为了给自己找一些乐趣,也是为了逼迫让自己养成总结的习惯,以后把抑郁症看过的论文都总结在这里,喜欢的话就一键三连吧~~~
欢迎同方向的同学和我一起探讨学习哦!!!
学习总有过程,对文章理解较浅的情况还望理解。

纵向数据中抑郁检测与预测的深度多任务学习
在这里插入图片描述

该网络名为MTNet,是一种在纵向数据中,新的深度多任务递归神经网络方法(一个二分类的抑郁分类网络)。
1.这里的纵向数据指的是样本的个人信息在时间上的变化,比如样本的社会经济特征、个人成长、家庭环境等。(原文语句:这些纵向数据是基于在不同时间段的随访研究中进行的临床访谈的结构化问卷数据。这些数据可能包括参与对象的各种信息,如人口统计信息、社会经济特征、个人成长、家庭环境等。)这些纵向数据组成了网络的输入X。
2.网络的输入和输出:单个受试者在单个时间点进行的问卷数据为xt,则,时间由1到w,便组成了受试者的矩阵数据X = {x1, x2, · · · , xw},其中xt∈RD是由第t波问卷数据推导出的特征向量。N个受试者的数据X = {X1, X2, · · · , XN } 便是网络的输入。网络的输出是二进制标签Y= {0,1 },0代表正常,1代表抑郁,是一个二分类问题。
3.文章的出发点:是针对现阶段在抑郁检测中样本量较少的问题(文章原句:深度学习方法,通常需要大的标记抑郁和非抑郁样本来学习所需的分类模型,但在实践中,只有小的标记抑郁样本可用,因为收集大的抑郁样本非常困难,如果不是不可能的话。例如,在大多数现有的研究中,总共只有100-300个样本可供建模。小样本的训练模型会导致过拟合,有看不见的抑郁症病例的误诊。)
3.其次是文章所说的多任务,也即文章的创新点。文章在对抑郁症的检测和预测任务上加入了两个辅助任务:单类度量学习异常排序(one-class metric learning and anomaly ranking)。在这两个辅助任务的帮助下,抑郁检测网络得到了非常好的优化。(文章原句:多任务学习通过引入相关任务中包含的归纳偏差来规范模型,从而改进了泛化;这是减少过拟合最有效的方法之一。对于抑郁症分类,我们的两个辅助任务是学习正常样本的紧凑特征表示,并允许抑郁症样本的表示有一些变化,从而能够检测到在表示空间中明显偏离正常样本的看不见抑郁症病例。)
4.文章认为使用纵向数据的优势是可以实现抑郁症的早期干预和预防(有点是从产生抑郁原因的概率角度分析的感觉):
1)个人发展和家庭环境的时间变化可以为精神障碍提供关键线索。
2)这些线索可能使我们能够实现更准确的抑郁症检测,并在疾病实际发生之前预测抑郁症。
5.文章认为传统只关注静态抑郁数据的弊端:主要关注从静态数据中学习抑郁症状,而不考虑时间动态的大多数模型,他们通常只有在有一些明显的抑郁症状时才能发现抑郁症的病例。(这种情况下,模型很难进行学习,学习的都是很微小的抑郁表示,而由于样本量往往过少或者数据采集过程不规范,可能有很大的偶然性,不是十分科学。)
在这里插入图片描述
因为度量学习和异常排序现在不是我学习的重点,因此模型的计算流程没有继续往下了解,仅摘取了一些文章里可用的话术,记录下来用于以后。文章解析到此。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值