本文从数字化实现的角度理解PI(proportional integral, PI)环节,为数字化实现PI打下基础。在电机控制环节中,PI环节应用广泛,如电机FOC控制中的内环——电流环,外环——速度环,又如永磁同步电机中无位置传感器中的PI环节。了解PI数字化实现的过程,有助于理解控制算法在离散系统中的实现过程。PI环顾名思义,一个比例环节,一个积分环节。输入误差在起点处分道,沿着两条支路前进,在终点处汇合,得到PI环的输出。
PI表达式离散化的前提,可以用微积分的思想来理解。表述如下:
u ( t ) ≈ u ( k ) ( 输出 ) u\left( t \right) \approx u\left( k \right) \left( \text{输出} \right) u(t)≈u(k)(输出)
e ( t ) ≈ e ( k ) (输入) e\left( t \right) \approx e\left( k \right) \text{(输入)} e(t)≈e(k)(输入)
∫ 0 t e ( t ) d t = ∑ i = 0 k e ( i ) Δ t = ∑ i = 0 k T s e ( i ) \int_0^t{e\left( t \right) dt=\sum_{i=0}^k{e\left( i \right) \Delta t=\sum_{i=0}^k{T_se\left( i \right)}}} ∫0te(t)dt=∑i=0ke(i)Δt=∑i=0kTse(i)
d e ( t ) d t ≈ e ( k ) − e ( k − 1 ) Δ t = e ( k ) − e ( k − 1 ) T s \frac{\mathrm{d}e\left( t \right)}{\mathrm{d}t}\approx \frac{e\left( k \right) -e\left( k-1 \right)}{\Delta t}=\frac{e\left( k \right) -e\left( k-1 \right)}{T_s} dtde(t)≈Δte(k)−e(k−1)=Tse(k)−e(k−1)
上式中, T s T_s Ts-采样周期,k-为采样序号,k=0,1,2…
第一种离散实现方式
第一种离散化实现的方式中,给出的例子是PID离散化表达方式,当只关注PI环节时,令表达式中的 K d ( K D ) = 0 K_d\left( K_D \right) =0 Kd(KD)=0即可去掉微分环节,得到PI离散化表达方式。
位置式PID算法,离散化表达式为,
u ( k ) = K P { e ( k ) + T T I ∑ i = 0 k e ( i ) + T D T [ e ( k ) − e ( k − 1 ) ] } = K P e ( k ) + K I ∑ i = 0 k e ( i ) + K D [ e ( k ) − e