设f(x)=∑x^n/n^2,证明f(x)+f(1-x)+lnxln(1-x)=∑1/n^2

题目

设 f ( x ) = ∑ n = 1 ∞ x n n 2 ,证明: f ( x ) + f ( 1 − x ) + ln ⁡ x ln ⁡ ( 1 − x ) = ∑ n = 1 ∞ 1 n 2 \text{设}f\left( x \right) =\sum_{n=1}^{\infty}{\frac{x^n}{n^2}}\text{,证明:}f\left( x \right) +f\left( 1-x \right) +\ln x\ln \left( 1-x \right) =\sum_{n=1}^{\infty}{\frac{1}{n^2}} f(x)=n=1n2xn,证明:f(x)+f(1x)+lnxln(1x)=n=1n21

解答

f ′ ( x ) = ∑ n = 1 ∞ x n − 1 n = 1 x ∑ n = 1 ∞ x n n = 1 x ∫ 0 x ∑ n = 1 ∞ t n − 1 d t = 1 x ∫ 0 x ∑ n = 0 ∞ t n d t = 1 x ∫ 0 x 1 1 − t d t = − ln ⁡ ( 1 − x ) x f'\left( x \right) =\sum_{n=1}^{\infty}{\frac{x^{n-1}}{n}}=\frac{1}{x}\sum_{n=1}^{\infty}{\frac{x^n}{n}}=\frac{1}{x}\int_0^x{\sum_{n=1}^{\infty}{t^{n-1}}dt}=\frac{1}{x}\int_0^x{\sum_{n=0}^{\infty}{t^n}dt}=\frac{1}{x}\int_0^x{\frac{1}{1-t}dt}=-\frac{\ln \left( 1-x \right)}{x} f(x)=n=1nxn1=x1n=1nxn=x10xn=1tn1dt=x10xn=0tndt=x10x1t1dt=xln(1x)
f ′ ( x ) − f ′ ( 1 − x ) = − ln ⁡ ( 1 − x ) x + ln ⁡ x 1 − x f'\left( x \right) -f'\left( 1-x \right) =-\frac{\ln \left( 1-x \right)}{x}+\frac{\ln x}{1-x} f(x)f(1x)=xln(1x)+1xlnx
∵ [ ln ⁡ x ln ⁡ ( 1 − x ) ] ′ = ln ⁡ ( 1 − x ) x − ln ⁡ x 1 − x \because \left[ \ln x\ln \left( 1-x \right) \right] '=\frac{\ln \left( 1-x \right)}{x}-\frac{\ln x}{1-x} [lnxln(1x)]=xln(1x)1xlnx
∴ f ′ ( x ) − f ′ ( 1 − x ) + [ ln ⁡ x ln ⁡ ( 1 − x ) ] ′ = 0 \therefore f'\left( x \right) -f'\left( 1-x \right) +\left[ \ln x\ln \left( 1-x \right) \right] '=0 f(x)f(1x)+[lnxln(1x)]=0
令 g ( x ) = f ( x ) + f ( 1 − x ) + ln ⁡ x ln ⁡ ( 1 − x )    x ∈ ( 0 , 1 ) \text{令}g\left( x \right) =f\left( x \right) +f\left( 1-x \right) +\ln x\ln \left( 1-x \right) \ \ x\in \left( 0,1 \right) g(x)=f(x)+f(1x)+lnxln(1x)  x(0,1)
∴ g ′ ( x ) = 0 \therefore g'\left( x \right) =0 g(x)=0
∵ ∫ 0 x g ′ ( u ) d u = g ( x ) − lim ⁡ t → 0 + g ( t ) = 0 \because \int_0^x{g'\left( u \right)}du=g\left( x \right) -\underset{t\rightarrow 0^+}{\lim}g\left( t \right) =0 0xg(u)du=g(x)t0+limg(t)=0
∴ g ( x ) = lim ⁡ t → 0 + g ( t ) \therefore g\left( x \right) =\underset{t\rightarrow 0^+}{\lim}g\left( t \right) g(x)=t0+limg(t)
∵ lim ⁡ t → 0 + g ( t ) = lim ⁡ t → 0 + f ( t ) + lim ⁡ t → 0 + f ( 1 − t ) + lim ⁡ t → 0 + ln ⁡ t ⋅ ln ⁡ ( 1 − t ) \because \underset{t\rightarrow 0^+}{\lim}g\left( t \right) =\underset{t\rightarrow 0^+}{\lim}f\left( t \right) +\underset{t\rightarrow 0^+}{\lim}f\left( 1-t \right) +\underset{t\rightarrow 0^+}{\lim}\ln t\cdot \ln \left( 1-t \right) t0+limg(t)=t0+limf(t)+t0+limf(1t)+t0+limlntln(1t)
其中 lim ⁡ t → 0 + f ( t ) = 0 ,   lim ⁡ t → 0 + f ( 1 − t ) = ∑ n = 1 ∞ 1 n 2 ,   lim ⁡ t → 0 + ln ⁡ t ⋅ ln ⁡ ( 1 − t ) = lim ⁡ t → 0 + t ln ⁡ t = lim ⁡ t → 0 + ln ⁡ t 1 t = lim ⁡ t → 0 + 1 t − 1 t 2 = 0 \text{其中}\underset{t\rightarrow 0^+}{\lim}f\left( t \right) =0,\ \underset{t\rightarrow 0^+}{\lim}f\left( 1-t \right) =\sum_{n=1}^{\infty}{\frac{1}{n^2}},\ \underset{t\rightarrow 0^+}{\lim}\ln t\cdot \ln \left( 1-t \right) =\underset{t\rightarrow 0^+}{\lim}t\ln t=\underset{t\rightarrow 0^+}{\lim}\frac{\ln t}{\frac{1}{t}}=\underset{t\rightarrow 0^+}{\lim}\frac{\frac{1}{t}}{-\frac{1}{t^2}}=0 其中t0+limf(t)=0, t0+limf(1t)=n=1n21, t0+limlntln(1t)=t0+limtlnt=t0+limt1lnt=t0+limt21t1=0
∴ lim ⁡ t → 0 + g ( t ) = ∑ n = 1 ∞ 1 n 2 \therefore \underset{t\rightarrow 0^+}{\lim}g\left( t \right) =\sum_{n=1}^{\infty}{\frac{1}{n^2}} t0+limg(t)=n=1n21
∴ g ( x ) = ∑ n = 1 ∞ 1 n 2 \therefore g\left( x \right) =\sum_{n=1}^{\infty}{\frac{1}{n^2}} g(x)=n=1n21
∴ f ( x ) + f ( 1 − x ) + ln ⁡ x ln ⁡ ( 1 − x ) = ∑ n = 1 ∞ 1 n 2 \therefore f\left( x \right) +f\left( 1-x \right) +\ln x\ln \left( 1-x \right) =\sum_{n=1}^{\infty}{\frac{1}{n^2}} f(x)+f(1x)+lnxln(1x)=n=1n21

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值