手把手教你使用Labelme制作自己的语义分割数据集(附代码)

1 参考资料

参考视频:Pytorch 搭建自己的Unet语义分割平台
代码资源下载链接:unet-pytorch
在这里插入图片描述

2 数据集存放路径

我自己的项目路径:D:\demo\unet-pytorch-main
在这里插入图片描述)

  1. before 文件夹:
    这个文件夹可能是为了存放一些预处理过的图片数据。在语义分割任务中,预处理包括裁剪、缩放、去除噪音等操作,以准备图像数据用于训练或推理。

  2. JPEGImages 文件夹:
    这个文件夹通常用于存放原始图片数据。

  3. SegmentationClass 文件夹:
    这个文件夹用于存放与每个图像对应的标签或掩码图像,这些图像描述了图像中每个像素的类别或类别的分割边界。用于语义分割任务的标签图像通常使用像素级别的注释,其中每个像素都被分配了一个特定的标签值。

我们把图片放入before文件夹和JPEGImages文件中
在这里插入图片描述

3 启动Labelme

首先打开命令提示符,激活pytorch环境

activate pytorch

3.1 没装过labelme

pip intall labelme==3.16.7

在这里插入图片描述

3.2 安装过labelme

直接输入labelme即可
在这里插入图片描述

在这里插入图片描述
启动成功~

4 在Labelme打标签

在这里插入图片描述
点击save Automatically这个按钮,会在每打完一张图的标签之后自动保存。
在这里插入图片描述
点击Create Polygons,开始打标签
cltr + Z可以撤回打错了的标签
在这里插入图片描述
打完标签之后,创建类别,按ok保存。
在这里插入图片描述

在这里插入图片描述
每张小动物的标签打完之后,会产生json格式的文件。
在这里插入图片描述

5 json格式转换数据集

json_to_dataset.py 用于将 JSON(JavaScript Object Notation)格式的标注数据转换为特定的数据集格式。
通过判断标注文件中的图像数据类型,将图像数据转换为 numpy 数组。然后,根据标注文件中的形状信息和类别映射,将图像的形状转换为标签图像的形状,并将标签图像保存为 PNG 格式。
在这里插入图片描述
在这里插入图片描述
运行成功~
在这里插入图片描述

5.1 json_to_dataset.py

import base64
import json
import os
import os.path as osp

import numpy as np
import PIL.Image
from labelme import utils

'''
制作自己的语义分割数据集需要注意以下几点:
1、我使用的labelme版本是3.16.7,建议使用该版本的labelme,有些版本的labelme会发生错误,
   具体错误为:Too many dimensions: 3 > 2
   安装方式为命令行pip install labelme==3.16.7
2、此处生成的标签图是8位彩色图,与视频中看起来的数据集格式不太一样。
   虽然看起来是彩图,但事实上只有8位,此时每个像素点的值就是这个像素点所属的种类。
   所以其实和视频中VOC数据集的格式一样。因此这样制作出来的数据集是可以正常使用的。也是正常的。
'''
if __name__ == '__main__':
    jpgs_path   = "datasets/JPEGImages"
    pngs_path   = "datasets/SegmentationClass"
    #classes     = ["_background_","aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
    classes     = ["_background_","cat","dog"]
    
    count = os.listdir("./datasets/before/") 
    for i in range(0, len(count)):
        path = os.path.join("./datasets/before", count[i])

        if os.path.isfile(path) and path.endswith('json'):
            data = json.load(open(path))
            
            if data['imageData']:
                imageData = data['imageData']
            else:
                imagePath = os.path.join(os.path.dirname(path), data['imagePath'])
                with open(imagePath, 'rb') as f:
                    imageData = f.read()
                    imageData = base64.b64encode(imageData).decode('utf-8')

            img = utils.img_b64_to_arr(imageData)
            label_name_to_value = {'_background_': 0}
            for shape in data['shapes']:
                label_name = shape['label']
                if label_name in label_name_to_value:
                    label_value = label_name_to_value[label_name]
                else:
                    label_value = len(label_name_to_value)
                    label_name_to_value[label_name] = label_value
            
            # label_values must be dense
            label_values, label_names = [], []
            for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
                label_values.append(lv)
                label_names.append(ln)
            assert label_values == list(range(len(label_values)))
            
            lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)
            
                
            PIL.Image.fromarray(img).save(osp.join(jpgs_path, count[i].split(".")[0]+'.jpg'))

            new = np.zeros([np.shape(img)[0],np.shape(img)[1]])
            for name in label_names:
                index_json = label_names.index(name)
                index_all = classes.index(name)
                new = new + index_all*(np.array(lbl) == index_json)

            utils.lblsave(osp.join(pngs_path, count[i].split(".")[0]+'.png'), new)
            print('Saved ' + count[i].split(".")[0] + '.jpg and ' + count[i].split(".")[0] + '.png')

### 使用 Labelme 进行语义分割标注 #### 安装与配置 为了使用 `Labelme` 工具进行语义分割标注,首先需要将其安装到 Python 环境中。可以通过 Anaconda 或者其他虚拟环境管理器来完成这一操作。具体命令如下: ```bash pip install labelme ``` 此命令会自动下载并安装最新版本的 `Labelme` 库及其依赖项[^5]。 #### 启动工具 安装完成后,在终端或者命令提示符下运行以下指令启动图形界面程序: ```bash labelme ``` 这一步骤将会打开一个基于 Qt 的 GUI 界面用于交互式标记图片数据集[^2]。 #### 主要功能介绍 在实际操作过程中,用户可以利用鼠标拖拽框选目标区域,并通过右侧属性栏定义类别名称以及设置颜色样式等参数。此外还有多种辅助选项可供选择调整画布缩放比例旋转角度等功能以便更精确地标记复杂形状对象[^1]。 对于快捷键支持方面也做了详细介绍说明表单形式呈现便于记忆掌握提高工作效率[^3]。 #### 输出格式注意事项 当保存已编辑好的项目时,默认生成 JSON 文件作为存储载体记录所有必要的元信息比如像素坐标位置关系分类标签描述等等字段内容。值得注意的是其中关于图像路径部分仅允许单纯文件名而不能包含任何额外目录结构指示符(如 ../ \\ )以免引起后续处理阶段出现问题影响正常使用效果[^4]。 以下是创建简单脚本读取这些JSON文件并将它们转换成PNG掩码的一个例子: ```python import json from PIL import Image, ImageDraw def shape_to_mask(size, points): img = Image.new('L', size, 0) ImageDraw.Draw(img).polygon(points, outline=1, fill=1) mask = np.array(img, dtype=bool) return mask with open("example.json") as f: data = json.load(f) img_size = (data['imageWidth'], data['imageHeight']) mask_img = Image.new('RGB', img_size ) for shape in data["shapes"]: polygon = [(point[0], point[1]) for point in shape["points"]] color = tuple([int(c * 255) for c in shape.get("fill_color", [0, 0, 0])]) draw = ImageDraw.Draw(mask_img ) draw.polygon(polygon ,outline=color,fill=color) mask_img.save("output.png") ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

失舵之舟-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值