【3DGS文献阅读04】/高斯溅射扩散模型/视图引导/单视图 GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction

1 背景

标题:GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction用于三维重建的视角引导高斯溅射扩散模型
作者:Yuxuan Mu, Xinxin Zuo, Chuan Guo, Yilin Wang, Juwei Lu, Xiaofeng Wu, Songcen Xu, Peng Dai, Youliang Yan, Li Cheng
机构:University of Alberta, Edmonton AB T6G 2R3, Canada
Huawei Noah’s Ark Lab
原文链接:https://arxiv.org/abs/2407.04237
官方网站:https://yxmu.foo/GSD/

GSD就是Gaussian Splatting Diffusion的缩写

2 摘要

作者介绍了一种名为GSD(View-Guided Gaussian Splatting Diffusion)的新方法,该方法旨在通过单个视角图像来重建三维物体。

GSD利用了高斯溅射(Gaussian splatting, GS)表示法,其中三维物体被描述为一组椭球集合。这种方法通过将细粒度的二维特征,经由设计的溅射函数和引导去噪采样过程,映射到三维空间中的对应位置,从而实现从2D到3D的转换。

为了确保重建物体的高质量,GSD还引入了一个二维扩散模型,用于增强渲染图像的真实感,即对生成的图像进行进一步的优化和再处理,以改善最终输出的视觉质量。

3 简介

对于单视图图像的三维重建问题,有三个关键方面。
1.要有一个适当的3D表示,能够编码高保真的3D信息,同时与各种级别的量化兼容。
2.与人类感知系统类似,能够生成具有物体背面不同外观的物体,并忠于输入视图。
3.能够高效、精准地将3D物体渲染成任意视图。

但是现有的水平难以解决上面一个或多个方面。
比如:

方法 优点 缺陷和不足
2D新视图合成方法 在保持3D一致性方面存在不足
显示的3D表示(体素、点云和网格) 提供一致的3D渲染 粗糙的几何形状和渲染质量(3D特征的低分辨率和稀疏性质)
隐式3D表示 在规范(正则)空间中单视图重建有着卓越的质量 在三维几何提取和视图渲染上有着繁琐的工作
作者的GSD框架 实现高质量的单视图三维重建

当没有输入图像时,作者的扩散模型学习生成具有不同几何形状和纹理的高保真3D物体。
在这里插入图片描述

当提供输入图像时,使用相同的扩散模型来重建特定的3D对象。每个去噪步骤的GS目标通过基于可微分溅射的渲染 投影到给定视图中。然后将渲染图像与参考图像之间的差异梯度反向传播到相应的GS样本中,在当前步骤中不断细化3D对象,类似于分类器引导。

在这里插入图片描述
我觉得类似于3DGS原理里中,可微光栅化渲染得到图像,把渲染图像和GT图像求损失值,反向传播更新3D高斯里的参数,不断迭代。

主要贡献有:
1.提出的GSD是第一个直接模拟原始GS表示的扩散模型,捕获其3D生成先验的单视图重建。
2.GS DiT带有视图引导采样策略,使用溅射功能从给定视图中提取细粒度特征。
3.与最先进的方法相比,CO3D数据集已经证实了方法的优越性。

4 相关工作

相关工作的大致框架分为三个点:
1.条件视角的三维重建和生成
2.新视图合成
3.基于SDS创建三维资产

4.1 条件视角的三维重建和生成

View-Conditioned 3D Reconstruction and Generation.

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

失舵之舟-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值