【重要】独立性和自相关性

  1. R n ( τ ) = 0 R_n(\tau) = 0 Rn(τ)=0 时,意味着信号在时刻 t t t t + τ t + \tau t+τ 之间没有相关性,也就是说在这两个时间点采样的值是统计独立的。换句话说,当自相关函数为零时,信号在这两个时刻的采样值不相关,彼此不影响。
  2. 两个信号完全独立一定代表着不相关,虽然相关函数的结果受到均值的影响可能不是0.但是两个信号的相关函数结果为0的时候,只是代表着线性不相关,也可能两个信号不独立,存在着非线性的关系。

1. 自相关函数和相关性

  • 自相关函数 R n ( τ ) R_n(\tau) Rn(τ) 描述的是信号在两个不同时间点之间的相似程度。具体来说,它衡量的是信号在不同时间滞后 τ \tau τ 下的统计相关性。

    对于一个随机过程 n ( t ) n(t) n(t),它的自相关函数定义为:
    R n ( τ ) = E [ n ( t ) n ( t + τ ) ] R_n(\tau) = E[n(t) n(t + \tau)] Rn(τ)=E[n(t)n(t+τ)]
    其中, E [ ⋅ ] E[\cdot] E[] 表示期望值, τ \tau τ 是时间滞后。

自相关函数的值衡量了两个时间点的相关性:

  • R n ( τ ) > 0 R_n(\tau) > 0 Rn(τ)>0 时,信号在这两个时刻是正相关的,意味着它们具有相似的趋势。
  • R n ( τ ) = 0 R_n(\tau) = 0 Rn(τ)=0 时,信号在这两个时刻是不相关的,即没有统计相关性。
  • R n ( τ ) < 0 R_n(\tau) < 0 Rn(τ)<0 时,信号在这两个时刻是负相关的,意味着它们具有相反的趋势。

2. 白噪声的自相关函数

对于白噪声,其自相关函数是一个冲激函数,即:
R n ( τ ) = N 0 2 δ ( τ ) R_n(\tau) = \frac{N_0}{2} \delta(\tau) Rn(τ)=2N0δ(τ)

  • 冲激函数 δ ( τ ) \delta(\tau) δ(τ) τ = 0 \tau = 0 τ=0 时为无限大,而在 τ ≠ 0 \tau \neq 0 τ=0 时为零。
  • 因此,白噪声的自相关函数表示的就是,只有当 τ = 0 \tau = 0 τ=0 时(即在同一个时刻上),信号的相关性才存在;在 τ ≠ 0 \tau \neq 0 τ=0 时(即不同时刻),信号之间是完全不相关的。

3. 独立性与自相关函数的关系

  • 独立性:对于两个随机变量 X ( t ) X(t) X(t) X ( t + τ ) X(t + \tau) X(t+τ),如果它们是独立的,这意味着一个变量的值不会提供关于另一个变量值的任何信息。对于独立的随机变量 X X X Y Y Y,它们的期望值满足:
    E [ X Y ] = E [ X ] E [ Y ] E[X Y] = E[X] E[Y] E[XY]=E[X]E[Y]

  • 自相关函数为零:当 R X ( τ ) = E [ X ( t ) X ( t + τ ) ] = 0 R_X(\tau) = E[X(t) X(t + \tau)] = 0 RX(τ)=E[X(t)X(t+τ)]=0,这意味着信号在两个时刻 t t t t + τ t + \tau t+τ 之间没有相关性。也就是说,两个时刻的信号值之间没有线性关系。

独立性并不一定总是导致自相关函数为零,只有在信号的均值为零时,独立性才会直接导致自相关函数为零。这是因为自相关函数不仅依赖于信号的波动部分,还包括了信号的均值部分。
但自相关函数为零不一定表示完全独立,它只表示线性不相关。

4. 中心化信号的自相关性

如果我们关心信号的波动部分(去掉均值的部分),可以通过对信号进行中心化来消除均值的影响。对于中心化的信号 X ′ ( t ) = X ( t ) − μ X'(t) = X(t) - \mu X(t)=X(t)μ,其自相关函数在 τ = ∞ \tau = \infty τ= 时将会为 0:

R X ′ ( ∞ ) = E [ ( X ( t ) − μ ) ( X ( t + ∞ ) − μ ) ] = 0 R_{X'}(\infty) = E[(X(t) - \mu)(X(t + \infty) - \mu)] = 0 RX()=E[(X(t)μ)(X(t+)μ)]=0

因为去掉均值后,两个时间点的波动部分是完全不相关的(独立)。

5. 总结

  • 独立性的确意味着 E [ X ( t ) X ( t + ∞ ) ] = E [ X ( t ) ] E [ X ( t + ∞ ) ] = μ 2 E[X(t) X(t + \infty)] = E[X(t)] E[X(t + \infty)] = \mu^2 E[X(t)X(t+)]=E[X(t)]E[X(t+)]=μ2(如果信号均值为 μ \mu μ)。
  • 自相关函数在 τ = ∞ \tau = \infty τ= 时等于 μ 2 \mu^2 μ2,这是因为信号的均值仍然存在,且信号在 τ = ∞ \tau = \infty τ= 时变得独立。
  • 如果信号有非零均值,即使信号在 τ = ∞ \tau = \infty τ= 时独立,自相关函数也可能不为零,但这主要是因为均值的贡献,而非实际的“相关性”。
  • 如果我们关注的是信号的波动部分(即去掉均值后的信号),那么自相关函数在 τ = ∞ \tau = \infty τ= 时应该是 0,表示没有任何相关性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值