面部表情识别(FER)动态模型中特征提取器和 Transformer 编码器层的具体配置和训练过程

We should note that the feature extractor is firstly pretrained on several FER datasets, then fine-tuned on the AffWild2 dataset frames, and is finally frozen so that it does not change its weights during the training of the dynamic model. As we fixed the number of static embeddings by modifying respective static models, the feature extractor always outputs 256 features per frame. For the Transformer based layers, we set the number of heads equal to 8 and dropout equals 0.1. Additionally, the positional encoding employed in [43] is applied to visual embeddings

这段描述详细介绍了面部表情识别(FER)动态模型中特征提取器和 Transformer 编码器层的具体配置和训练过程:

  1. 特征提取器的预训练和微调

    • 预训练:特征提取器首先在多个 FER 数据集上进行了预训练。这一步是为了让特征提取器在广泛的数据上学习基本的表情特征,从而具备对表情特征的初步理解。
    • 微调:在预训练之后,特征提取器在特定的 AffWild2 数据集帧上进行微调。AffWild2 是一个包含情绪标签的大型动态面部表情数据集,其数
### 使用Transformer进行特征提取的方法 Transformer作为一种强大的神经网络架构,在自然语言处理领域被广泛用于特征提取。以下是基于Transformer实现特征提取具体方法以及代码示例。 #### 1. Transformer作为特征提取的核心原理 Transformer通过自注意力机制(Self-Attention Mechanism)捕捉输入序列中的全局依赖关系,从而生成高质量的上下文嵌入向量。这些嵌入向量可以进一步用作下游任务的特征表示[^3]。具体来说: - **Embedding Layer**: 将输入词汇转换为固定维度的词向量,并加上位置编码(Positional Encoding),以便模型理解序列中的顺序信息。 - **Encoder Layers**: 多堆叠的编码器模块负责学习输入序列的语义特征。每包含一个多头注意力子前馈神经网络子,二者均带有残差连接Layer Normalization。 - **Feature Extraction**: 可以从最后一编码器输出中获取每个token的隐藏状态作为其特征表示;或者取特殊标记`[CLS]`对应的隐藏状态作为整个句子的特征表示。 #### 2. Python代码示例 下面是一个简单的Python代码示例,展示如何利用预训练好的BERT模型(一种典型的Transformer变体)来进行文本特征提取: ```python from transformers import BertTokenizer, BertModel import torch # 加载预训练模型及其分词 tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') def extract_features(texts): # 对输入文本进行分词并转化为ID形式 inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True) with torch.no_grad(): outputs = model(**inputs) # 前向传播 # 获取最后一个隐含的状态 (batch_size, sequence_length, hidden_dim) last_hidden_states = outputs.last_hidden_state # 如果需要获得整个句子级别的特征,则可以选择 [CLS] token 的特征 cls_features = last_hidden_states[:, 0, :] return last_hidden_states, cls_features texts = ["This is a sample sentence.", "Another example here."] sequence_features, sentence_features = extract_features(texts) print("Sequence Features Shape:", sequence_features.shape) # 输出形状应为(batch_size, seq_len, hidden_dim) print("Sentence Features Shape:", sentence_features.shape) # 输出形状应为(batch_size, hidden_dim) ``` 此代码片段加载了一个名为 `bert-base-uncased` 的预训练模型,并定义了一个函数来执行批量文本的特征提取操作。最终返回两个张量:一个是针对每个单词/子词单元的特征表示;另一个则是代表整个句子的单一向量表示[^3]。 #### 3. 关于其他模型的比较 相较于传统的RNN或CNN方法,Transformers具备更优的并行化能力更强的建模远程依赖的能力[^4]。然而需要注意的是,尽管经过改造后的RNN能够在一定程度上接近Transformer的表现,但在大多数情况下仍难以超越后者[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值