一、定义法
算法: 给定 n × n n \times n n×n矩阵 A \pmb A AAA,由泰勒展开式可得 e A t = I + A t + 1 2 ! A 2 t 2 + . . . + 1 n ! A n t n + . . . e^{At}=\pmb I+\pmb At+\frac{1}{2!}\pmb A^2t^2+...+\frac{1}{n!}\pmb A^nt^n+... eAt=III+AAAt+2!1AAA2t2+...+n!1AAAntn+...
二、特征值法
算法1: 给定 n × n n \times n n×n矩阵 A \pmb A AAA,且其 n n n个特征值 λ 1 , λ 2 , . . . λ n \lambda_1,\lambda_2,...\lambda_n λ1,λ2,...λn两两互异,表由矩阵 A A A的属于各个特征值的右特征向量组成的变换矩阵 P \pmb P PPP为 P = [ p 1 , p 2 , . . . , p n ] , \pmb P=[p_1,p_2,...,p_n], PPP=[p1,p2,...,pn],则计算 e A t e^{At} eAt的算式为 e A t = P [ e λ 1 t e λ 2 t ⋱ e λ n t ] P − 1 e^{At}=\pmb P\begin{bmatrix}e^{\lambda_1t}&&&\\&e^{\lambda_2t}&&\\&&\ddots\\&&&e^{\lambda_nt}\end{bmatrix}\pmb P^{-1} eAt=PPP⎣⎢⎢⎡eλ1teλ2t⋱eλnt⎦⎥⎥⎤PPP−1
算法2: 给定 n × n n \times n n×n矩阵 A \pmb A AAA,其特征值属于包含重值情况。为使符号不致过于复杂,设 n = 5 n=5 n=5,特征值 λ 1 \lambda_1 λ1(代数重数 σ 1 = 3 \sigma_1=3 σ1=3,几何重数 α 1 = 1 \alpha_1=1 α1=1), λ 2 ( σ 2 = 2 , α 2 = 1 ) \lambda_2(\sigma_2=2,\alpha_2=1) λ2(σ2=2,α2=1)。再表由矩阵 A \pmb A AAA的属于 λ 1 \lambda_1 λ1和 λ 2 \lambda_2 λ2的广义特征向量组组所构成的变换矩阵 P \pmb P PPP,且基于约当规范形可把 A \pmb A AAA化为如下形式: A = P [ λ 1 1 0 0 0 0 λ 1 1 0 0 0 0 λ 1 0 0 0 0 0 λ 2 1 0 0 0 0 λ 2 ] P − 1 \pmb A=\pmb P\left[\begin{array}{ccc|cc}\lambda_1&1&0&0&0\\0&\lambda_1&1&0&0\\0&0&\lambda_1&0&0\\ \hline 0&0&0&\lambda_2&1\\0&0&0&0&\lambda_2\end{array}\right]\pmb P^{-1} AAA=PPP⎣⎢⎢⎢⎢⎡λ100001λ100001λ100000λ200001λ2⎦⎥⎥⎥⎥⎤PPP−1
三、有限项展开法
算法: ** 给定 n × n n \times n n×n矩阵 A \pmb A AAA,则计算 e A t e^{At} eAt的算式为 e A t = α 0 ( t ) I + α 1 ( t ) A + . . . + α n − 1 ( t ) A n − 1 e^{At}=\alpha_0(t)I+ \alpha_1(t)\pmb A+...+\alpha_{n-1}(t)\pmb A^{n-1} eAt=α0(t)I+α1(t)AAA+...+αn−1(t)AAAn−1其中,对 A \pmb A AAA的特征值 λ 1 , λ 2 , . . . λ n \lambda_1,\lambda_2,...\lambda_n λ1,λ2,...λn两两互异的情况下,系数 { α 0 , α 1 , . . . , α n − 1 } \{\alpha_0,\alpha_1,...,\alpha_{n-1}\} {α0,α1,...,αn−1}的计算关系式为 [ α 0 α 1 ⋮ α n − 1 ] = [ 1 λ 1 λ 1 2 . . . λ 1 n − 1 1 λ 2 λ 2 2 . . . λ 2 n − 1 ⋮ ⋮ ⋮ ⋮ 1 λ n λ n 2 . . . λ n n − 1 ] [ e λ 1 t e λ 2 t ⋮ e λ n t ] \begin{bmatrix}\alpha_0\\\alpha_1\\\vdots\\\alpha_{n-1}\end{bmatrix}=\begin{bmatrix}1&\lambda_1&\lambda_1^2&...&\lambda_1^{n-1}\\1&\lambda_2&\lambda_2^2&...&\lambda_2^{n-1}\\\vdots&\vdots&\vdots&&\vdots\\1&\lambda_n&\lambda_n^2&...&\lambda_n^{n-1}\end{bmatrix}\begin{bmatrix}e^{\lambda_1t}\\e^{\lambda_2t}\\\vdots\\e^{\lambda_nt}\end{bmatrix} ⎣⎢⎢⎢⎡α0α1⋮αn−1⎦⎥⎥⎥⎤=⎣⎢⎢⎢⎡11⋮1λ1λ2⋮λnλ12λ22⋮λn2.........λ1n−1λ2n−1⋮λnn−1⎦⎥⎥⎥⎤⎣⎢⎢⎢⎡eλ1teλ2t⋮eλnt⎦⎥⎥⎥⎤对 A \pmb A AAA的特征值包含重值如特征值 λ 1 \lambda_1 λ1(代数重数 σ 1 = 3 \sigma_1=3 σ1=3,几何重数 α 1 = 1 \alpha_1=1 α1=1), λ 2 ( σ 2 = 2 , α 2 = 1 ) , λ 3 , . . . , λ n − 3 \lambda_2(\sigma_2=2,\alpha_2=1),\lambda_3,...,\lambda_{n-3} λ2(σ2=2,α2=1),λ3,...,λn−3情形,系数 { α 0 , α 1 , . . . , α n − 1 } \{\alpha_0,\alpha_1,...,\alpha_{n-1}\} {α0,α1,...,αn−1}的计算关系式为 [ α 0 α 1 α 2 α 3 α 4 α 5 ⋮ α n − 1 ] = [ 0 0 1 3 λ 1 . . . ( n − 1 ) ( n − 2 ) 1 ! λ 1 n − 3 0 1 2 λ 1 3 λ 1 2 . . . ( n − 1 ) 1 ! λ 1 n − 2 1 λ 1 λ 1 2 λ 1 3 . . . λ 1 n − 1 0 1 2 λ 2 3 λ 2 2 . . . ( n − 1 ) 1 ! λ 2 n − 2 1 λ 2 λ 2 2 λ 2 3 . . . λ 2 n − 1 1 λ 3 λ 3 2 λ 3 3 . . . λ 3 n − 1 ⋮ ⋮ ⋮ ⋮ ⋮ 1 λ n − 3 λ n − 3 2 λ n − 3 3 . . . λ n − 3 n − 1 ] [ 1 2 ! t 2 e λ 1 t 1 1 ! t e λ 1 t e λ 1 t 1 1 ! t e λ 2 t e λ 2 t e λ 3 t ⋮ e λ n − 3 t ] \begin{bmatrix}\alpha_0\\\alpha_1\\\alpha_2\\ \hline \alpha_3\\\alpha_4\\\hline \alpha_5\\\vdots\\\alpha_{n-1}\end{bmatrix}=\begin{bmatrix}0&0&1&3\lambda_1&...&\frac{(n-1)(n-2)}{1!}\lambda_1^{n-3}\\ 0&1&2\lambda_1&3\lambda_1^2&...&\frac{(n-1)}{1!}\lambda_1^{n-2}\\ 1&\lambda_1&\lambda_1^2& \lambda_1^3&...&\lambda_1^{n-1}\\ \hline 0&1&2\lambda_2&3\lambda_2^2&...&\frac{(n-1)}{1!}\lambda_2^{n-2}\\ 1&\lambda_2&\lambda_2^2&\lambda_2^3&...&\lambda_2^{n-1}\\ \hline 1&\lambda_3&\lambda_3^2&\lambda_3^3&...&\lambda_3^{n-1}\\ \vdots&\vdots&\vdots&\vdots&&\vdots\\ 1&\lambda_{n-3}&\lambda_{n-3}^2&\lambda_{n-3}^3&...&\lambda_{n-3}^{n-1}\end{bmatrix}\begin{bmatrix}\frac{1}{2!}t^2e^{\lambda_1t}\\\frac{1}{1!}te^{\lambda_1t}\\e^{\lambda_1t}\\\hline \frac{1}{1!}te^{\lambda_2t}\\e^{\lambda_2t}\\\hline e^{\lambda_3t}\\\vdots\\e^{\lambda_{n-3}t}\end{bmatrix} ⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡α0α1α2α3α4α5⋮αn−1⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡001011⋮101λ11λ2λ3⋮λn−312λ1λ122λ2λ22λ32⋮λn−323λ13λ12λ133λ22λ23λ33⋮λn−33.....................1!(n−1)(n−2)λ1n−31!(n−1)λ1n−2λ1n−11!(n−1)λ2n−2λ2n−1λ3n−1⋮λn−3n−1⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡2!1t2eλ1t1!1teλ1teλ1t1!1teλ2teλ2teλ3t⋮eλn−3t⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤
四、拉普拉斯反变换法
算法: 给定 n × n n \times n n×n矩阵 A \pmb A AAA,得到矩阵 ( s I − A ) − 1 (sI-\pmb A)^{-1} (sI−AAA)−1,则计算 e A t e^{At} eAt的算式为 e A t = L − 1 ( s I − A ) − 1 e^{At}=\mathscr{L} ^{-1} (sI-\pmb A)^{-1} eAt=L−1(sI−AAA)−1
矩阵 ( s I − A ) − 1 (sI-\pmb A)^{-1} (sI−AAA)−1通常的算法为先求出 ∣ s I − A ∣ |sI-\pmb A| ∣sI−AAA∣,再求 ( s I − A ) ∗ (sI-\pmb A)^* (sI−AAA)∗,通过公式 ( s I − A ) − 1 = ( s I − A ) ∗ ∣ s I − A ∣ (sI-\pmb A)^{-1}=\frac{(sI-\pmb A)^*}{|sI-\pmb A|} (sI−AAA)−1=∣sI−AAA∣(sI−AAA)∗计算出来。
参考文献
郑大钟.线性系统理论[M].北京:清华大学出版社,2002:91.