【现代控制】状态转移矩阵的四种求法


一、定义法

算法: 给定 n × n n \times n n×n矩阵 A \pmb A AAA,由泰勒展开式可得 e A t = I + A t + 1 2 ! A 2 t 2 + . . . + 1 n ! A n t n + . . . e^{At}=\pmb I+\pmb At+\frac{1}{2!}\pmb A^2t^2+...+\frac{1}{n!}\pmb A^nt^n+... eAt=III+AAAt+2!1AAA2t2+...+n!1AAAntn+...

二、特征值法

算法1: 给定 n × n n \times n n×n矩阵 A \pmb A AAA,且其 n n n个特征值 λ 1 , λ 2 , . . . λ n \lambda_1,\lambda_2,...\lambda_n λ1,λ2,...λn两两互异,表由矩阵 A A A的属于各个特征值的右特征向量组成的变换矩阵 P \pmb P PPP P = [ p 1 , p 2 , . . . , p n ] , \pmb P=[p_1,p_2,...,p_n], PPP=[p1,p2,...,pn],则计算 e A t e^{At} eAt的算式为 e A t = P [ e λ 1 t e λ 2 t ⋱ e λ n t ] P − 1 e^{At}=\pmb P\begin{bmatrix}e^{\lambda_1t}&&&\\&e^{\lambda_2t}&&\\&&\ddots\\&&&e^{\lambda_nt}\end{bmatrix}\pmb P^{-1} eAt=PPPeλ1teλ2teλntPPP1

算法2: 给定 n × n n \times n n×n矩阵 A \pmb A AAA,其特征值属于包含重值情况。为使符号不致过于复杂,设 n = 5 n=5 n=5,特征值 λ 1 \lambda_1 λ1(代数重数 σ 1 = 3 \sigma_1=3 σ1=3,几何重数 α 1 = 1 \alpha_1=1 α1=1), λ 2 ( σ 2 = 2 , α 2 = 1 ) \lambda_2(\sigma_2=2,\alpha_2=1) λ2(σ2=2,α2=1)。再表由矩阵 A \pmb A AAA的属于 λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2的广义特征向量组组所构成的变换矩阵 P \pmb P PPP,且基于约当规范形可把 A \pmb A AAA化为如下形式: A = P [ λ 1 1 0 0 0 0 λ 1 1 0 0 0 0 λ 1 0 0 0 0 0 λ 2 1 0 0 0 0 λ 2 ] P − 1 \pmb A=\pmb P\left[\begin{array}{ccc|cc}\lambda_1&1&0&0&0\\0&\lambda_1&1&0&0\\0&0&\lambda_1&0&0\\ \hline 0&0&0&\lambda_2&1\\0&0&0&0&\lambda_2\end{array}\right]\pmb P^{-1} AAA=PPPλ100001λ100001λ100000λ200001λ2PPP1

三、有限项展开法

算法: ** 给定 n × n n \times n n×n矩阵 A \pmb A AAA,则计算 e A t e^{At} eAt的算式为 e A t = α 0 ( t ) I + α 1 ( t ) A + . . . + α n − 1 ( t ) A n − 1 e^{At}=\alpha_0(t)I+ \alpha_1(t)\pmb A+...+\alpha_{n-1}(t)\pmb A^{n-1} eAt=α0(t)I+α1(t)AAA+...+αn1(t)AAAn1其中,对 A \pmb A AAA的特征值 λ 1 , λ 2 , . . . λ n \lambda_1,\lambda_2,...\lambda_n λ1,λ2,...λn两两互异的情况下,系数 { α 0 , α 1 , . . . , α n − 1 } \{\alpha_0,\alpha_1,...,\alpha_{n-1}\} {α0,α1,...,αn1}的计算关系式为 [ α 0 α 1 ⋮ α n − 1 ] = [ 1 λ 1 λ 1 2 . . . λ 1 n − 1 1 λ 2 λ 2 2 . . . λ 2 n − 1 ⋮ ⋮ ⋮ ⋮ 1 λ n λ n 2 . . . λ n n − 1 ] [ e λ 1 t e λ 2 t ⋮ e λ n t ] \begin{bmatrix}\alpha_0\\\alpha_1\\\vdots\\\alpha_{n-1}\end{bmatrix}=\begin{bmatrix}1&\lambda_1&\lambda_1^2&...&\lambda_1^{n-1}\\1&\lambda_2&\lambda_2^2&...&\lambda_2^{n-1}\\\vdots&\vdots&\vdots&&\vdots\\1&\lambda_n&\lambda_n^2&...&\lambda_n^{n-1}\end{bmatrix}\begin{bmatrix}e^{\lambda_1t}\\e^{\lambda_2t}\\\vdots\\e^{\lambda_nt}\end{bmatrix} α0α1αn1=111λ1λ2λnλ12λ22λn2.........λ1n1λ2n1λnn1eλ1teλ2teλnt A \pmb A AAA的特征值包含重值如特征值 λ 1 \lambda_1 λ1(代数重数 σ 1 = 3 \sigma_1=3 σ1=3,几何重数 α 1 = 1 \alpha_1=1 α1=1), λ 2 ( σ 2 = 2 , α 2 = 1 ) , λ 3 , . . . , λ n − 3 \lambda_2(\sigma_2=2,\alpha_2=1),\lambda_3,...,\lambda_{n-3} λ2(σ2=2,α2=1),λ3,...,λn3情形,系数 { α 0 , α 1 , . . . , α n − 1 } \{\alpha_0,\alpha_1,...,\alpha_{n-1}\} {α0,α1,...,αn1}的计算关系式为 [ α 0 α 1 α 2 α 3 α 4 α 5 ⋮ α n − 1 ] = [ 0 0 1 3 λ 1 . . . ( n − 1 ) ( n − 2 ) 1 ! λ 1 n − 3 0 1 2 λ 1 3 λ 1 2 . . . ( n − 1 ) 1 ! λ 1 n − 2 1 λ 1 λ 1 2 λ 1 3 . . . λ 1 n − 1 0 1 2 λ 2 3 λ 2 2 . . . ( n − 1 ) 1 ! λ 2 n − 2 1 λ 2 λ 2 2 λ 2 3 . . . λ 2 n − 1 1 λ 3 λ 3 2 λ 3 3 . . . λ 3 n − 1 ⋮ ⋮ ⋮ ⋮ ⋮ 1 λ n − 3 λ n − 3 2 λ n − 3 3 . . . λ n − 3 n − 1 ] [ 1 2 ! t 2 e λ 1 t 1 1 ! t e λ 1 t e λ 1 t 1 1 ! t e λ 2 t e λ 2 t e λ 3 t ⋮ e λ n − 3 t ] \begin{bmatrix}\alpha_0\\\alpha_1\\\alpha_2\\ \hline \alpha_3\\\alpha_4\\\hline \alpha_5\\\vdots\\\alpha_{n-1}\end{bmatrix}=\begin{bmatrix}0&0&1&3\lambda_1&...&\frac{(n-1)(n-2)}{1!}\lambda_1^{n-3}\\ 0&1&2\lambda_1&3\lambda_1^2&...&\frac{(n-1)}{1!}\lambda_1^{n-2}\\ 1&\lambda_1&\lambda_1^2& \lambda_1^3&...&\lambda_1^{n-1}\\ \hline 0&1&2\lambda_2&3\lambda_2^2&...&\frac{(n-1)}{1!}\lambda_2^{n-2}\\ 1&\lambda_2&\lambda_2^2&\lambda_2^3&...&\lambda_2^{n-1}\\ \hline 1&\lambda_3&\lambda_3^2&\lambda_3^3&...&\lambda_3^{n-1}\\ \vdots&\vdots&\vdots&\vdots&&\vdots\\ 1&\lambda_{n-3}&\lambda_{n-3}^2&\lambda_{n-3}^3&...&\lambda_{n-3}^{n-1}\end{bmatrix}\begin{bmatrix}\frac{1}{2!}t^2e^{\lambda_1t}\\\frac{1}{1!}te^{\lambda_1t}\\e^{\lambda_1t}\\\hline \frac{1}{1!}te^{\lambda_2t}\\e^{\lambda_2t}\\\hline e^{\lambda_3t}\\\vdots\\e^{\lambda_{n-3}t}\end{bmatrix} α0α1α2α3α4α5αn1=001011101λ11λ2λ3λn312λ1λ122λ2λ22λ32λn323λ13λ12λ133λ22λ23λ33λn33.....................1!(n1)(n2)λ1n31!(n1)λ1n2λ1n11!(n1)λ2n2λ2n1λ3n1λn3n12!1t2eλ1t1!1teλ1teλ1t1!1teλ2teλ2teλ3teλn3t

四、拉普拉斯反变换法

算法: 给定 n × n n \times n n×n矩阵 A \pmb A AAA,得到矩阵 ( s I − A ) − 1 (sI-\pmb A)^{-1} (sIAAA)1,则计算 e A t e^{At} eAt的算式为 e A t = L − 1 ( s I − A ) − 1 e^{At}=\mathscr{L} ^{-1} (sI-\pmb A)^{-1} eAt=L1(sIAAA)1

矩阵 ( s I − A ) − 1 (sI-\pmb A)^{-1} (sIAAA)1通常的算法为先求出 ∣ s I − A ∣ |sI-\pmb A| sIAAA,再求 ( s I − A ) ∗ (sI-\pmb A)^* (sIAAA),通过公式 ( s I − A ) − 1 = ( s I − A ) ∗ ∣ s I − A ∣ (sI-\pmb A)^{-1}=\frac{(sI-\pmb A)^*}{|sI-\pmb A|} (sIAAA)1=sIAAA(sIAAA)计算出来。

参考文献

郑大钟.线性系统理论[M].北京:清华大学出版社,2002:91.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

麦斯威尔逊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值