激光点云语义分割算法:RangeNet++

激光点云语义分割算法:RangeNet++

RangeNet++简介

RangeNet++是一篇发表在IROS 2019上的论文《RangeNet++: Fast and Accurate LiDAR Semantic Segmentation》中提出的一个激光点云语义分割算法,该算法将激光点云通过球面投影转换为距离图像(Range Images),然后在距离图像上用二维卷积神经网络提取特征进行语义分割。为了获得精确的分割效果,作者还提出了一种新的后处理算法用于处理由于投影变换带来的离散化误差或者卷积神经网络模糊的输出结果。实验结果表明,RangeNet++的语义分割效果胜过已有的其他算法,并且可以在单个嵌入式GPU上实时运行。

论文地址: https://www.ipb.uni-bonn.de/wp-content/papercite-data/pdf/milioto2019iros.pdf

代码地址: https://github.com/PRBonn/lidar-bonnetal

在这里插入图片描述

实现方法

RangeNet++提出的点云语义分割方法分为如下图所示的4个步骤:

A. 点云投影
B. 全卷积语义分割
C. 从距离图像中重建点云
D. 高效的点云后处理

在这里插入图片描述

A. 点云投影

很多激光雷达传感器(比如Velodyne激光雷达)通常以类似于距离图像的方式来表示原始的输入数据:每一列表示一组激光测距仪在某个时间点测量到的距离值,而每一行则代表每个测距仪在不同转向位置上测量到的距离值。为了得到全部激光点云精确的语义分割结果,RangeNet++的第一步是通过球面坐标将每个三维空间的点 p i = ( x , y , z ) p_{i}=(x,y,z) pi=(x,y,z)转换到由距离图像表示的二维空间,转换公式如下:

( u v ) = ( 1 2 [ 1 − arctan ⁡ ( y , x ) / π ] w [ 1 − ( arcsin ⁡ ( z / r ) + f u p ) / f ] h ) \begin{pmatrix} u \\ v \end{pmatrix}=\begin{pmatrix} \frac{1}{2}\left [ 1-\arctan (y,x) / \pi \right ]w \\ \left [ 1-(\arcsin (z/r)+f_{up})/f \right ]h \end{pmatrix} (uv)=(21[1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeepDriving

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值