第一讲 高数基本知识1

函数定义

可以一对一、多对一

反函数

y = 2 x 与 x = 1 / 2 y 互为反函数 y=2x与x=1/2y 互为反函数 y=2xx=1/2y互为反函数

记作 x = f − 1 ( x ) = f [ f − 1 ( x ) ] x=f^{-1}(x)=f\left[f^{-1}(x)\right] x=f1(x)=f[f1(x)]

性质

单调函数一点有反函数,反过来不一定

反函数关于 y = x y=x y=x对称

复合函数

一层包一层

例题
  1. 广义化

  2. 画图

  3. 写答案


    在这里插入图片描述

函数特性

有界性

有界无界讨论必须指明区间

有边即有界

【注】

原函数 ( a , b ) (a,b) (a,b)内可导,导函数 ( a , b ) (a,b) (a,b)内有界 → {\to} 原函数 ( a , b ) (a,b) (a,b)内有界

单调性
求导证明

f ( x ) ′ > 0 f(x)^{'}>0 f(x)>0 单调递增

定义证明

( x 1 − x 2 ) [ f ( x 1 ) − f ( x 2 ) ] > 0 (x_1-x_2)[f(x_1)-f(x_2)]>0 (x1x2)[f(x1)f(x2)]>0 单调递增

奇偶性
奇函数

f ( − x ) = − f ( x ) F 1 ( x ) = f ( x ) − f ( − x ) \begin{array}{l} f(-x)=-f(x) \\ F 1(x)=f(x)-f(-x) \end{array} f(x)=f(x)F1(x)=f(x)f(x)

关于原点对称

原点有定义时 f ( 0 ) = 0 f(0)=0 f(0)=0

偶函数

f ( − x ) = f ( x ) F 1 ( x ) = f ( x ) + f ( − x ) \begin{array}{l} f(-x)=f(x) \\ F 1(x)=f(x)+f(-x) \end{array} f(x)=f(x)F1(x)=f(x)+f(x)

关于 y y y轴定义

原点有定义时 f ′ ( 0 ) = 0 f^{'}(0)=0 f(0)=0

【注】
  • 可导偶函数周期一样,导函数为奇函数

    可导奇函数,导函数为偶函数

  • 连续奇函数原函数一定是偶函数

    …… 偶函数只有一个原函数是奇函数

    • 偶函数仅 y y y轴对称,奇函数全都要。太贪心
周期性
定义

f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x)

周期为T

【注】

连续且周期为T的函数,若 ∫ 0 T f ( x ) d x = 0 \int_{0}^{T} f(x) \mathrm{d} x=0 0Tf(x)dx=0,则 f ( x ) f(x) f(x)周期也为T

对称性
对称轴结果表达式
xy值变号 y = f ( x ) 与 y = − f ( x ) y=f(x) 与 y=-f(x) y=f(x)y=f(x)
yx值变号 y = f ( x ) 与 y = f ( − x ) y=f(x)与 y=f(-x) y=f(x)y=f(x)
原点都变 y = f ( x ) 与 y = − f ( − x ) y=f(x) 与y=-f(-x) y=f(x)y=f(x)
x = a x=a x=a f ( x ) = f ( 2 a − x ) 或 f ( x + a ) = f ( x − a ) f(x)=f(2 a-x)或 f(x+a)=f(x-a) f(x)=f(2ax)f(x+a)=f(xa),充要
y = b y=b y=b
y = a x + b y=ax+b y=ax+b
【注】
  • f ( x 1 ) 与 f ( x 2 ) 的对称轴为 x 1 + x 2 2 f(x_1)与f(x_2)的对称轴为\frac{x_1+x_2}{2} f(x1)f(x2)的对称轴为2x1+x2

  • 充要条件

​ 充分必要条件

​ 前后乱推,乱杀级别

函数图像

常见图像

x > 0 时, y = x , y = x 2 , y = x , y = x 3 , y = x 3 , y = 1 x x>0时,\quad y=x, \quad y=x^{2}, \quad y=\sqrt{x}, \quad y=x^{3}, \quad y=\sqrt[3]{x}, \quad y=\frac{1}{x}\quad x>0时,y=x,y=x2,y=x ,y=x3,y=3x ,y=x1单调性相同

在这里插入图片描述

【注】
  • u , u 3 , 1 u \quad\sqrt{u}, \sqrt[3]{u},\frac{1}{u}\quad u ,3u u1最值,研究 u \quad u u

  • ∣ u ∣ |u|\quad u,研究 u 2 \quad u^2 u2

  • 对于 u 1 u 2 u 3 ,研究 ln ⁡ ( u 1 u 2 u 3 ) = ln ⁡ u 1 + ln ⁡ u 2 + ln ⁡ u 3 对于u_{1} u_{2} u_{3} \quad ,研究\quad \ln \left(u_{1} u_{2} u_{3}\right)=\ln u_{1}+\ln u_{2}+\ln u_{3} 对于u1u2u3,研究ln(u1u2u3)=lnu1+lnu2+lnu3

三角函数

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

证明函数值为C

  1. 求导得 f ′ ( x ) = 0 f^{'}(x)=0 f(x)=0
  2. 带入任意值, f ( x 0 ) = c f(x_0)=c f(x0)=c

原理:拉格朗日中值定理

在这里插入图片描述

【注】

在这里插入图片描述
在这里插入图片描述

极坐标下作图

描点法

在这里插入图片描述

草图法

θ \theta θ r r r
0 0 0 0 0 0
π 2 \frac{\pi}{2} 2π a a a
π {\pi} π 2 a 2a 2a
3 π 2 \frac{3\pi}{2} 23π a a a
2 π {2\pi} 2π 0 0 0

作图如下

在这里插入图片描述

经典图形

心形线

r = a ( 1 − cos ⁡ θ ) ( a > 0 ) r=a(1-\cos \theta)(a>0) r=a(1cosθ)(a>0)

在这里插入图片描述
玫瑰线

r = a sin ⁡ 3 θ ( a > 0 ) r=a \sin 3 \theta(a>0) r=asin3θ(a>0)

在这里插入图片描述
阿基米德螺线

r = a θ ( a > 0 , θ ⩾ 0 ) r=a \theta(a>0, \theta \geqslant 0) r=aθ(a>0,θ0)

在这里插入图片描述
伯努利双曲线
在这里插入图片描述
摆线

在轮子上画个点,随着车走轮子的轨迹
在这里插入图片描述

星形线

小圆在一固定大圆内部滚动,若 r 大 = 4 r 小 r_{大}=4r_{小} r=4r,则
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值