目录
本讲主要介绍了高等数学常用基础知识即函数的相关基本概念。
例题一
例1.2 求函数 y = f ( x ) = ln ( x + x 2 + 1 ) y=f(x)=\ln(x+\sqrt{x^2+1}) y=f(x)=ln(x+x2+1)的反函数 f − 1 ( x ) f^{-1}(x) f−1(x)的表达式及其定义域。
解 由题意得
− y = − ln ( x + x 2 + 1 ) = ln 1 x + x 2 + 1 = ln x 2 + 1 − x ( x 2 + 1 + x ) ( x 2 + 1 − x ) = ln ( x 2 + 1 − x ) . \begin{aligned} -y&=-\ln(x+\sqrt{x^2+1})=\ln\cfrac{1}{x+\sqrt{x^2+1}}\\ &=\ln\cfrac{\sqrt{x^2+1}-x}{(\sqrt{x^2+1}+x)(\sqrt{x^2+1}-x)}=\ln(\sqrt{x^2+1}-x). \end{aligned} −y=−ln(x+x2+1)=lnx+x2+11=ln(x2+1