局部图像描述子

本文深入探讨了局部图像描述子,包括Harris角点检测的原理、数学表达式和实验分析,接着详细阐述了SIFT特征、算法步骤、描述子编码及其稳定性。最后,介绍了图像匹配的原理和SIFT在图像匹配中的应用,展示了其在不同环境下的匹配效果。
摘要由CSDN通过智能技术生成

目录

局部图像描述子

一、Harris角点检测

1、Harris角点检测点基本思想

2、Harris角点检测点数学表达式

3、Harris角点检测编码

4、实验结果分析:

二、SIFT描述子

1、SIFT特征

2、SIFT算法基本步骤

3、SIFT描述子编码

4、实验分析

三、图像匹配

1、图像匹配原理

2、编码实现

2、编码结果

 ​


 


局部图像描述子

一、Harris角点检测

1、Harris角点检测点基本思想

我们对图像角点的判断,假定一个正方形小窗口,窗口向任意方向的移动都导致图像灰度的明显变化,则代表该区域存在角点。如下图所示:

当正方形小窗口位于平坦区域时,任意方向移动,都无灰度变化。

当正方形小窗口位于边缘区域时,沿着边缘方向移动,无灰度变化。

当正方形小窗口位于角点区域时,沿任何方向移动,有明显的灰度变化。

 

2、Harris角点检测点数学表达式

如图所示:

通过M的两个特征值的大小对图像点进行分类,根据角点响应函数R,R只与M的特征值有关。 

3、Harris角点检测编码

1、角点检测:

from pylab import *
from PIL import Image
from PCV.localdescriptors import harris

im=array(Image.open('21.jpg').convert('L'))

harrisim = harris.compute_harris_response(im)

harrisiml = 255-harrisim

figure()
gray()

subplot(141)
imshow(harrisiml)
print (harrisiml.shape)
axis('off')
axis('equal')

threshold = [0.05,0.08,0.2]
for i,thres in enumerate(threshold):
    filtered_coords = harris.get_harris_points(harrisim,6,thres)
    subplot(1,4,i+2)
    imshow(im)
    print(im.shape)
    plot([p[1] for p in filtered_coords],[p[0] for p in filtered_coords],'*')
    axis('off')
    show()

2、编码结果:

3、对应点连接编码:

from pylab import *
from PIL import Image

from PCV.localdescriptors import harris
from PCV.tools.imtools import imresize

"""
This is the Harris point matching example in Figure 2-2.
"""


im1 = array(Image.open("112.jpg").convert("L"))
im2 = array(Image.open("113.jpg").convert("L"))

# resize加快匹配速度
im1 = imresiz
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值