三维点云处理第三章(1)--Clustering(聚类)

相似的东西放在一起,看作一个类。聚类涉及到的相关知识很多。

线性代数:谱聚类的物理意义,对一个矩阵SVD的物理意义,就是把它分解成两个旋转矩阵,加一个缩放矩阵,A在这里是一个对称矩阵,所以两个旋转矩阵是一样的,所以就可写成下面这种形式,进一步拆开就有特征值,以及uu正交的矩阵。

 这里是瑞利熵,它同样可以通过SVD的物理原理来理解,既然一个向量,同样可以分解成两个旋转矩阵,加一个缩放矩阵。缩放矩阵其实是一个对角矩阵,对角线放的就是在每一个轴上我要缩放多少,旋转矩阵不会对一个向量的长度做出改变的,所以瑞利熵最大可以取多少,最小可以取多少,就取决于这个A里面的缩放矩阵。概率l论基础知识:两个事件X、Y,P(x,y)就是两个事件发生的概率,两个事件可以是离散的、连续的、也可以是离散加连续的。连续情况下,,边缘分布和全概率公式很相似。如右下图,x\y的分布,颜色越白越亮的部分,说明x,y取这个值的概率会更大。想得到x就把y给积分,想得到y就把x积分。

 离散情况下同理

 那么做完积分后,这还是不是一个合法的概率分布呢(也就是概率总和等于1)?一定是。因为我对积分后得到的x概率做一次求和,它一定会等于1。

但是,在条件概率情况下(之前是不管其中一个,只要另一个的全概率),也就是假如我先知道y是某一个确定已知的值,比如y = y1或y = y2,那么此时就出现条件概率的分布,在这种条件下,x是一种什么样的分布呢?其实现在就只需要考虑y = y1那一条线上的值就可以了,就可以得到该情况x的分布。但此时这个切片并不是一个合法的分布,因此我们需要对它做一个归一化,如下式。也就是贝叶斯公式。

 扩展到更多的维度,如下式。

 图论知识:图论里面的图有两种,一种是有向图,一种是无向图。有向图由一系列的节点和一系列的边组成,如图右上角。每一个节点代表每一个随机变量,每一条边代表两个随机变量之间的联系。它们的分布就可以写成P(x,z) = P(z)P(x|z),也就是前面提到的条件概率。如果两个变量没有关系,那么P(x,z) = P(x)P(z)

 无向图的变量之间的联系是没有方向的。就像两个城市,以及中间的一条路。

 优化方法:拉格朗日求解法。想优化一个二元函数f(x,y),但做优化时有一个限制,就是要求g(x,y) = 0,那么一定有\bigtriangledown x,yf = \lambda \bigtriangledown x,yg\bigtriangledown一阶求导符号),f(x,y)可以取到最大值。

 数学上,其实就是拉格朗日求法。先写这样一个式子\pounds (x,y,\lambda ) = f(x,y)-\lambda g(x,y),然后让其对每一个变量求一阶导并令为0,也就是\bigtriangledown x,y,\lambda \pounds (x,y,\lambda ) =0,再求解,如图所示。

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值