Dijistra和A star算法

本文介绍了Dijkstra算法和A*算法在自动驾驶领域的路径搜索和轨迹规划中的作用。Dijkstra算法采用贪心策略寻找最短路径,而A*算法在Dijkstra基础上加入了预估目标距离,减少了搜索范围,提高了效率。这两种算法在实际应用中,A*算法因考虑了目标距离,通常能提供更优的路径规划。
摘要由CSDN通过智能技术生成

Dijistra和A star算法在自动驾驶领域可用于路径的搜索,甚至在一定的场景下能用作轨迹的规划。

A star算法相当于是Dijistra算法的改进,在其基础上加上了绝对距离等判断条件,从而大大降低了路径搜索的范围,节约了算力。理解两个算法,我们要先从Dijistra算法开始。

1.Dijistra算法的思路

Dijistra算法的思路很简单,采用的是一种贪心的策略,声明一个数组dis来保存源点到各个顶点的最短距离和一个保存已经找到了最短路径的顶点的集合:T,初始时,原点 s 的路径权重被赋为 0 (dis[s] = 0)。若对于顶点 s 存在能直接到达的边(s,m),则把dis[m]设为w(s, m),同时把所有其他(s不能直接到达的)顶点的路径长度设为无穷大。初始时,集合T只有顶点s。
然后,从dis数组选择最小值,则该值就是源点s到该值对应的顶点的最短路径,并且把该点加入到T中,OK,此时完成一个顶点,然后,我们需要看看新加入的顶点是否可以到达其他顶点并且看看通过该顶点到达其他点的路径长度是否比源点直接到达短,如果是,那么就替换这些顶点在dis中的值。然后,又从dis中找出最小值,重复上述动作,直到T中包含了图的所有顶点。

算法的伪代码如下:

 其中:

最小堆open:存储所有需要处理的节点

变量closed: 表示已经处理完的节点集

变量predecessors: 回溯最短路径上的已经访问过的节点

uCost:源节点到该点的距离

从下图可以大致理解一下Djistra的搜索过程:

假设一个从s到t的场景:

首先s可以到b和a,这是我们将其作为存储起来,这个时候从s到a的距离是大于从s到b的;因此再搜索b的下一步路径,将a保留存储。s到b再到c的距离是1.5还是小于s到a,因此继续从c向后搜索这时从s到b再到c再到d的距离大于从s到a的距离,因此从a再开始搜索,搜索一步后就到了目的地,整个算法的进程结束。

能力有限可能讲的不是很到位,大伙可以自行查阅资料,Dijistra算法还是比较好理解的。

2.A star算法的改进

 A*算法其实就是在Dijistra算法加了一个欧氏距离或者曼哈顿距离的判断。

欧式距离:

欧式距离计算公式_Panpan Wei的博客-CSDN博客_欧式距离计算公式

曼哈顿距离:

 

 其实现伪代码如图:

可以看出A*算法相对于Dijistra主要加上了绝对距离h,这个h代表的是当前点到终点的欧式距离或者曼哈顿距离。可以理解为如果我在搜索时,这个距离过大,那么这个点之后的路径将不在进行搜索。我们可以对这个欧式距离设定一定的权重,来使得A*算法探索路径的能力和得到最优路径的能力有一个很好的平衡。

3.两种算法的实现和结果对比

Dijistra算法:

"""
Grid based Dijkstra planning
"""

import matplotlib.pyplot as plt
import math

show_animation = True


class Dijkstra:

    def __init__(self, ox, oy, resolution, robot_radius):
        """
        Initialize map for a star planning
        ox: x position list of Obstacles [m]
        oy: y position list of Obstacles [m]
        resolution: grid resolution [m]
        rr: robot radius[m]
        """

        self.min_x = None
        self.min_y = None
        self.max_x = None
        self.max_y = None
        self.x_width = None
        self.y_width = None
        self.obstacle_map = None

        self.resolution = resolution
        self.robot_radius = robot_radius
        self.calc_obstacle_map(ox, oy)
        self.motion = self.get_motion_model()

    class Node:
        def __init__(self, x, y, cost, parent_index):
            self.x = x  # index of grid
            self.y = y  # index of grid
            self.cost = cost
            self.parent_index = parent_index  # index of previous Node

        def __str__(self):
            return str(self.x) + "," + str(self.y) + "," + str(
                self.cost) + "," + str(self.parent_index)

    def planning(self, sx, sy, gx, gy):
        """
        dijkstra path search
        input:
            s_x: start x position [m]
            s_y: start y position [m]
            gx: goal x position [m]
            gx: goal x position [m]
        output:
            rx: x position list of the final path
            ry: y position list of the final path
        """
#设置起点
        start_node = self.Node(self.calc_xy_index(sx, self.min_x),
                               self.calc_xy_index(sy, self.min_y), 0.0, -1)
#设置目标终点
        goal_node = self.Node(self.calc_xy_index(gx, self.min_x),
                              self.calc_xy_index(gy, self.min_y), 0.0, -1)
#初始化两个字典
        open_set, closed_set = dict(), dict()
#给字典放元素,先放进去起始点
        open_set[self.calc_index(start_node)] = start_node

        while 1:
#搜索最小的键值对
            c_id = min(open_set, key=lambda o: open_set[o].cost)
#得到当前可以保存的路径
            current = open_set[c_id]
#在图像中得到展示
            # show graph
            if show_animation:  # pragma: no cover
                plt.plot(self.calc_position(current.x, self.min_x),
                         self.calc_position(current.y, self.min_y), "xc")
                # for stopping simulation with the esc key.
                plt.gcf().canvas.mpl_connect(
                    'key_release_event',
                    lambda event: [exit(0) if event.key == 'escape' else None])
                if len(closed_set.keys()) % 10 == 0:
                    plt.pause(0.001)
#如果x,y已经等于目标点
            if current.x == goal_node.x and current.y == goal_node.y:
                print("Find goal")
                goal_node.parent_index = current.parent_index
                goal_node.cost = current.cost
                break

            # Remove the item from the open set
            del open_set[c_id]

            # Add it to the closed set
            closed_set[c_id] = current

            # expand search grid based on motion model
            for move_x, move_y, move_cost in self.motion:
                node = self.Node(current.x + move_x,
                                 current.y + move_y,
                                 current.cost + move_cost, c_id)
                n_id = self.calc_index(node)

                if n_id in closed_set:
                    continue

                if not self.verify_node(node):
                    continue

                if n_id not in open_set:
                    open_set[n_id] = node  # Discover a new node
                else:
                    if open_set[n_id].cost >= node.cost:
                        # This path is the best until now. record it!
                        open_set[n_id] = node

        rx, ry = self.calc_final_path(goal_node, closed_set)

        return rx, ry

    def calc_final_path(self, goal_node, closed_set):
        # generate final path
        rx, ry = [self.calc_position(goal_node.x, self.min_x)], [
            self.calc_position(goal_node.y, self.min_y)]
        parent_index = goal_node.parent_index
        while parent_index != -1:
            n = closed_set[parent_index]
            rx.append(self.calc_position(n.x, self.min_x))
            ry.append(self.calc_position(n.y, self.min_y))
            parent_index = n.parent_index

        return rx, ry

    def calc_position(self, index, minp):
        pos = index * self.resolution + minp
        return pos

    def calc_xy_index(self, position, minp):
        return round((position - minp) / self.resolution)

    def calc_index(self, node):
        return (node.y - self.min_y) * self.x_width + (node.x - self.min_x)

    def verify_node(self, node):
        px = self.calc_position(node.x, self.min_x)
        py = self.calc_position(node.y, self.min_y)

        if px < self.min_x:
            return False
        if py < self.min_y:
            return False
        if px >= self.max_x:
            return False
        if py >= self.max_y:
            return False

        if self.obstacle_map[node.x][node.y]:
            return False

        return True

    def calc_obstacle_map(self, ox, oy):

        self.min_x = round(min(ox))
        self.min_y = round(min(oy))
        self.max_x = round(max(ox))
        self.max_y = round(max(oy))
        print("min_x:", self.min_x)
        print("min_y:", self.min_y)
        print("max_x:", self.max_x)
        print("max_y:", self.max_y)

        self.x_width = round((self.max_x - self.min_x) / self.resolution)
        self.y_width = round((self.max_y - self.min_y) / self.resolution)
        print("x_width:", self.x_width)
        print("y_width:", self.y_width)

        # obstacle map generation
        self.obstacle_map = [[False for _ in range(self.y_width)]
                             for _ in range(self.x_width)]
        for ix in range(self.x_width):
            x = self.calc_position(ix, self.min_x)
            for iy in range(self.y_width):
                y = self.calc_position(iy, self.min_y)
                for iox, ioy in zip(ox, oy):
                    d = math.hypot(iox - x, ioy - y)
                    if d <= self.robot_radius:
                        self.obstacle_map[ix][iy] = True
                        break

    @staticmethod
    def get_motion_model():
        # dx, dy, cost
        motion = [[1, 0, 1],
                  [0, 1, 1],
                  [-1, 0, 1],
                  [0, -1, 1],
                  [-1, -1, math.sqrt(2)],
                  [-1, 1, math.sqrt(2)],
                  [1, -1, math.sqrt(2)],
                  [1, 1, math.sqrt(2)]]

        return motion


def main():
    print(__file__ + " start!!")

    # start and goal position
    sx =10.0  # [m]
    sy = 10.0  # [m]
    gx = 50.0  # [m]
    gy = 50.0  # [m]
    grid_size = 2.0  # [m]
    robot_radius = 1.0  # [m]

    # set obstacle positions
    ox, oy = [], []
    for i in range(-10, 60):
        ox.append(i)
        oy.append(-10.0)
    for i in range(-10, 60):
        ox.append(60.0)
        oy.append(i)
    for i in range(-10, 61):
        ox.append(i)
        oy.append(60.0)
    for i in range(-10, 61):
        ox.append(-10.0)
        oy.append(i)
    for i in range(-10, 40):
        ox.append(20.0)
        oy.append(i)
    for i in range(0, 40):
        ox.append(40.0)
        oy.append(60.0 - i)
    for i in range(40, 55):
        ox.append(i)
        oy.append(30)

    if show_animation:  # pragma: no cover
        plt.plot(ox, oy, ".k")
        plt.plot(sx, sy, "og")
        plt.plot(gx, gy, "xb")
        plt.grid(True)
        plt.axis("equal")

    dijkstra = Dijkstra(ox, oy, grid_size, robot_radius)
    rx, ry = dijkstra.planning(sx, sy, gx, gy)

    if show_animation:  # pragma: no cover
        plt.plot(rx, ry, "-r")
        plt.pause(0.01)
        plt.show()


if __name__ == '__main__':
    main()

A*算法实现(定义一个欧式距离或曼哈顿距离函数)

"""
A* grid planning
"""
import numpy as np
import math

import matplotlib.pyplot as plt

show_animation = True


class AStarPlanner:

    def __init__(self, ox, oy, resolution, rr):
        """
        Initialize grid map for a star planning
        ox: x position list of Obstacles [m]
        oy: y position list of Obstacles [m]
        resolution: grid resolution [m]
        rr: robot radius[m]
        """

        self.resolution = resolution
        self.rr = rr
        self.min_x, self.min_y = 0, 0
        self.max_x, self.max_y = 0, 0
        self.obstacle_map = None
        self.x_width, self.y_width = 0, 0
        self.motion = self.get_motion_model()
        self.calc_obstacle_map(ox, oy)

    class Node:
        def __init__(self, x, y, cost, parent_index):
            self.x = x  # index of grid
            self.y = y  # index of grid
            self.cost = cost
            self.parent_index = parent_index

        def __str__(self):
            return str(self.x) + "," + str(self.y) + "," + str(
                self.cost) + "," + str(self.parent_index)

    def planning(self, sx, sy, gx, gy):
        """
        A star path search
        input:
            s_x: start x position [m]
            s_y: start y position [m]
            gx: goal x position [m]
            gy: goal y position [m]
        output:
            rx: x position list of the final path
            ry: y position list of the final path
        """
        # 设置起点
        start_node = self.Node(self.calc_xy_index(sx, self.min_x),
                               self.calc_xy_index(sy, self.min_y), 0.0, -1)
        # 设置目标终点
        goal_node = self.Node(self.calc_xy_index(gx, self.min_x),
                              self.calc_xy_index(gy, self.min_y), 0.0, -1)
        # 初始化两个字典
        open_set, closed_set = dict(), dict()
        # 给字典放元素,先放进去起始点
        open_set[self.calc_grid_index(start_node)] = start_node
#添加欧式距离或者曼哈顿距离
        while 1:
            # 搜索最小的键值对,前一项和Dijstra一样,后面一项是添加的距离
            #c_id = min(open_set, key=lambda o: open_set[o].cost)
            #c_id = min(open_set, key=lambda o: open_set[o].cost + self.calc_heuristic(open_set[o], goal_node))
            #c_id = min(open_set, key=lambda o: open_set[o].cost + self.calc_euclidean(open_set[o], goal_node))
            c_id = min(open_set, key=lambda o: open_set[o].cost + self.calc_manhattan(open_set[o], goal_node))

            # 得到当前可以保存的路径
            current = open_set[c_id]
            # 在图像中得到展示
            # show graph
            if show_animation:  # pragma: no cover
                plt.plot(self.calc_grid_position(current.x, self.min_x),
                         self.calc_grid_position(current.y, self.min_y), "xc")
                # for stopping simulation with the esc key.
                plt.gcf().canvas.mpl_connect(
                    'key_release_event',
                    lambda event: [exit(0) if event.key == 'escape' else None])
                if len(closed_set.keys()) % 10 == 0:
                    plt.pause(0.001)
            # 如果x,y已经等于目标点
            if current.x == goal_node.x and current.y == goal_node.y:
                print("Find goal")
                goal_node.parent_index = current.parent_index
                goal_node.cost = current.cost
                break

            # Remove the item from the open set
            del open_set[c_id]

            # Add it to the closed set
            closed_set[c_id] = current

            # expand search grid based on motion model
            for move_x, move_y, move_cost in self.motion:
                node = self.Node(current.x + move_x,
                                 current.y + move_y,
                                 current.cost + move_cost, c_id)
                n_id = self.calc_grid_index(node)

                if n_id in closed_set:
                    continue

                if not self.verify_node(node):
                    continue

                if n_id not in open_set:
                    open_set[n_id] = node  # Discover a new node
                else:
                    if open_set[n_id].cost >= node.cost:
                        # This path is the best until now. record it!
                        open_set[n_id] = node

        rx, ry = self.calc_final_path(goal_node, closed_set)


        return rx, ry

    def calc_final_path(self, goal_node, closed_set):
        # generate final path,用于更新最后的环境
        rx, ry = [self.calc_grid_position(goal_node.x, self.min_x)], [
            self.calc_grid_position(goal_node.y, self.min_y)]
        parent_index = goal_node.parent_index
        while parent_index != -1:
            n = closed_set[parent_index]
            rx.append(self.calc_grid_position(n.x, self.min_x))
            ry.append(self.calc_grid_position(n.y, self.min_y))
            parent_index = n.parent_index

        return rx, ry

    @staticmethod
    #三角形距离计算
    # def calc_heuristic(n1, n2):
    #     w = 5.0  # weight of heuristic
    #     d = w * math.hypot(n1.x - n2.x, n1.y - n2.y)
    #     return d
    #欧氏距离计算
    # def calc_euclidean(n1,n2):
    #     w=1.0
    #     d=w*pow(pow(n1.x-n2.x,2)+pow(n1.y-n2.y,2),0.5)
    #     return d
    #曼哈顿距离计算

    def calc_manhattan(n1,n2):
        """
        添加曼哈顿距离
        w:权重系数
        n1:x方向node
        n2:y方向node
        d:距离
        """
        w = 5.0
        d = w*(abs(n1.x-n2.x)+abs(n1.y - n2.y))
        return d

    def calc_grid_position(self, index, min_position):
        """
        calc grid position
        :param index:
        :param min_position:
        :return:
        """
        pos = index * self.resolution + min_position
        return pos
#获取下标的函数
    def calc_xy_index(self, position, min_pos):
        return round((position - min_pos) / self.resolution)
#获取网格下标
    def calc_grid_index(self, node):
        return (node.y - self.min_y) * self.x_width + (node.x - self.min_x)
#判断存入节点选择
    def verify_node(self, node):
        px = self.calc_grid_position(node.x, self.min_x)
        py = self.calc_grid_position(node.y, self.min_y)

        if px < self.min_x:
            return False
        elif py < self.min_y:
            return False
        elif px >= self.max_x:
            return False
        elif py >= self.max_y:
            return False

        # collision check
        if self.obstacle_map[node.x][node.y]:
            return False

        return True
#生成地图
    def calc_obstacle_map(self, ox, oy):

        self.min_x = round(min(ox))
        self.min_y = round(min(oy))
        self.max_x = round(max(ox))
        self.max_y = round(max(oy))
        print("min_x:", self.min_x)
        print("min_y:", self.min_y)
        print("max_x:", self.max_x)
        print("max_y:", self.max_y)

        self.x_width = round((self.max_x - self.min_x) / self.resolution)
        self.y_width = round((self.max_y - self.min_y) / self.resolution)
        print("x_width:", self.x_width)
        print("y_width:", self.y_width)

        # obstacle map generation
        self.obstacle_map = [[False for _ in range(self.y_width)]
                             for _ in range(self.x_width)]
        for ix in range(self.x_width):
            x = self.calc_grid_position(ix, self.min_x)
            for iy in range(self.y_width):
                y = self.calc_grid_position(iy, self.min_y)
                for iox, ioy in zip(ox, oy):
                    d = math.hypot(iox - x, ioy - y)
                    if d <= self.rr:
                        self.obstacle_map[ix][iy] = True
                        break
#规定可执行动作行为
    @staticmethod
    def get_motion_model():
        # dx, dy, cost
        motion = [[1, 0, 1],
                  [0, 1, 1],
                  [-1, 0, 1],
                  [0, -1, 1],
                  [-1, -1, math.sqrt(2)],
                  [-1, 1, math.sqrt(2)],
                  [1, -1, math.sqrt(2)],
                  [1, 1, math.sqrt(2)]]

        return motion


def main():
    print(__file__ + " start!!")

    # start and goal position
    sx = 10.0  # [m]
    sy = 10.0  # [m]
    gx = 50.0  # [m]
    gy = 50.0  # [m]
    grid_size = 2.0  # [m]
    robot_radius = 1.0  # [m]

    # set obstacle positions
    ox, oy = [], []
    for i in range(-10, 60):
        ox.append(i)
        oy.append(-10.0)
    for i in range(-10, 60):
        ox.append(60.0)
        oy.append(i)
    for i in range(-10, 61):
        ox.append(i)
        oy.append(60.0)
    for i in range(-10, 61):
        ox.append(-10.0)
        oy.append(i)
    for i in range(-10, 40):
        ox.append(20.0)
        oy.append(i)
    for i in range(0, 40):
        ox.append(40.0)
        oy.append(60.0 - i)
# #添加一个障碍
    for i in range(40, 55):
        ox.append(i)
        oy.append(30)



    if show_animation:  # pragma: no cover
#显示中文标题
        plt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文标签
        plt.rcParams['axes.unicode_minus'] = False
        plt.title("路径规划实验结果")
#设置坐标轴字体字号
        plt.yticks(fontproperties='Times New Roman', size=16)
        plt.xticks(fontproperties='Times New Roman', size=16)
#更改作图颜色
        plt.plot(ox, oy, ".r")
        plt.plot(sx, sy, "og")
        plt.plot(gx, gy, "xb")
        plt.grid(True)
        plt.axis("equal")

    a_star = AStarPlanner(ox, oy, grid_size, robot_radius)
    rx, ry = a_star.planning(sx, sy, gx, gy)

    if show_animation:  # pragma: no cover
        plt.plot(rx, ry, "-b")
        plt.pause(0.001)
        plt.show()
    plt.show()


if __name__ == '__main__':
    main()

4.实现效果

Dijistra算法:

 A*算法:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值