基础知识
- 自动驾驶概论:了解自动驾驶的等级划分(SAE J3016标准),行业现状与发展趋势。
- 计算机基础:计算机组成原理、操作系统、多线程编程、网络通信基础。
- 编程语言:熟练掌握Python和C++,因为它们在自动驾驶软件开发中广泛应用。
- 数据结构与算法:强化DS&A基础,对于解决自动驾驶中的复杂问题至关重要。
- 版本控制:Git的使用,用于代码管理和团队协作。
深度学习与机器学习
- 数学基础:线性代数、概率论、微积分等,这些是理解深度学习模型的基础。
- 深度学习框架:PyTorch或TensorFlow,至少精通其中之一,用于构建和训练神经网络。
- 基础模型:理解并实践卷积神经网络(CNN)、循环神经网络(RNN)等基本模型。
- 高级主题:注意力机制、Transformer架构、生成模型等,这些在自动驾驶的某些任务中很关键。
自动驾驶核心领域
-
感知:
- 图像处理与计算机视觉:目标检测、语义分割、实例分割、关键点检测等。
- 3D感知:点云处理、LiDAR数据解析、多视图几何等。
- 多模态融合:视觉与雷达、LiDAR数据的融合处理。
-
定位与建图(SLAM):
- SLAM技术原理,包括视觉SLAM、激光SLAM等。
- 高精地图的制作与使用。
-
决策规划与控制:
- 轨迹规划、行为决策、运动控制等。
- 路径规划算法,如A*、RRT等。
-
系统集成与部署:
- ROS(Robot Operating System)的学习与应用。
- 算法的优化与部署,如TensorRT、NNIE、NCNN等加速库的使用。
实战与项目
- 参与或创建自动驾驶相关的项目,如无人车模拟器(如Apollo、CARLA)上的实践。
- 学习并理解现有的自动驾驶开源项目,如Apollo、Autoware等。
- 数据集练习:使用公开的数据集(如KITTI、Waymo Open Dataset)进行模型训练与测试。
行业动态与职业发展
- 关注自动驾驶行业的最新动态,包括技术突破、政策法规、市场趋势。
- 加入相关的社群、论坛,如自动驾驶之心知识星球,参与讨论,获取信息。
- 准备面试:学习自动驾驶相关的面试题,包括SLAM、CV、路径规划等领域的知识。
持续学习与反思
- 不断跟踪最新的研究论文和技术创新。
- 建立个人学习计划,并根据反馈调整学习策略。
- 保持耐心与毅力,自动驾驶是一个跨学科且技术快速迭代的领域,持续学习是关键。
请根据自己的兴趣和目标,选择合适的学习资源和项目,逐步深入,实践中不断巩固理论知识。