- 题目:Unlocking the Potential of Reverse Distillation for Anomaly Detection
- 论文地址:https://arxiv.org/pdf/2412.07579
- 代码地址:https://github.com/hito2448/URD
- 年份:2025年发表于AAAL
背景知识
异常检测是工业质量检测中的关键任务,由于获取异常图像和标注成本高昂,无监督异常检测受到广泛关注。无监督AD仅使用正常图像进行训练,以检测和定位测试图像中的异常。知识蒸馏是无监督AD的常见方法,但学生网络的过度泛化常导致检测失败。逆向蒸馏(Reverse Distillation, RD)通过设计不对称的教师和学生网络来改善这一问题,但仍存在教师编码器无法有效区分正常和异常特征、学生解码器生成异常特征以及缺少跳跃连接导致细节丢失等问题。
研究方法
为了解决RD的局限性,文章提出了RD-E方法,该方法引入了一个专家网络,与教师和学生网络一起训练,以增强教师对异常的敏感性和学生生成正常特征的能力。具体来说:
-
Expert-Teacher-Student (ET-S) 网络:在原有的教师-学生框架基础上,引入了一个专家网络。专家网络的架构和初始参数与教师网络相同,但在训练过程中保持冻结。教师网络使用单独的优化器,而瓶颈和学生网络共享同一个优化器。
-
增强教师的异常敏感性:通过使用真实异常掩码指导教师网络的特征提取过程,确保教师网络在正常区域保持高余弦相似度,在异常区域增加教师异常特征与专家正常特征之间的余弦距离。
-
学生网络的去噪策略:学生网络被训练以重建教师和专家网络的正常特征,无论输入图像是正常还是异常。这通过基于余弦相似度的优化来实现。
-
引导信息注入(Guided Information Injection, GII):为了解决细节重建问题,GII模块利用高层特征的相似性作为注意力机制,引导教师的特征信息注入学生网络,从而在不引入异常信息的情况下,增强细节重建。
实验
实验部分,作者在多个基准数据集上验证了RD-E方法的有效性,包括MVTec AD、MPDD和BTAD数据集。实验结果表明:
-
图像级异常检测:在MVTec AD数据集上,RD-E方法在平均精度(AP)上达到了99.7%,在所有类别中表现最佳。在异常定位方面,像素级AUC达到了99.0%,在RD范式中表现最佳。
-
像素级异常定位:在MVTec AD数据集上,RD-E方法在像素级AUC、AP和PRO指标上均超越了其他KD基方法。在MPDD和BTAD数据集上,RD-E方法在所有指标上均优于其他RD基方法。
-
消融研究:通过消融实验,作者证明了RD-E和GII模块的有效性。实验结果表明,同时应用RD-E和GII时,方法在异常定位上表现最佳。此外,引入专家网络和GII模块显著降低了漏检率和误检率。
关键结论
文章的关键结论是,通过引入专家网络和引导信息注入模块,RD-E方法有效地解决了RD在异常检测中的局限性,显著提高了无监督异常检测的性能。实验结果证明了该方法在多个数据集上的优越性,尤其是在减少漏检和误检方面。
细节和重点
- RD-E方法:通过专家网络同时蒸馏教师和学生网络,增强异常敏感性和去噪能力。
- GII模块:利用高层特征相似性作为注意力机制,引导教师特征注入学生网络,改善细节重建。
- 实验结果:在多个数据集上,RD-E方法在图像级和像素级异常检测和定位上均优于现有方法。
- 消融研究:证明了RD-E和GII模块的有效性,以及它们在降低漏检率和误检率方面的作用。