IMU预积分推导(二)

IMU预积分推导系列文章
IMU预积分推导(一)
IMU预积分推导(二)
IMU预积分推导(三)

4、零偏更新对预积分观测量的影响

在前面的噪声分离和误差传播过程中,假设了第 i i i时刻陀螺仪零偏 b g , i \mathbf{b}_{g,i} bg,i加速度计零偏 b a , i \mathbf{b}_{a,i} ba,i是固定的,但实际上零偏作为优化变量是不断更新的。第 i i i时刻,假设更新前加速度计和陀螺仪零偏的值分别为 b g , i \mathbf{b}_{g,i} bg,i b a , i \mathbf{b}_{a,i} ba,i,更新小量分别用 δ b a , i \delta\mathbf{b}_{a,i} δba,i δ b g , i \delta\mathbf{b}_{g,i} δbg,i表示,更新后的零偏仍用 b g , i \mathbf{b}_{g,i} bg,i b a , i \mathbf{b}_{a,i} ba,i表示
b g , i ← b g , i + δ b g , i b a , i ← b a , i + δ b a , i \mathbf{b}_{g,i}\leftarrow\mathbf{b}_{g,i}+\delta\mathbf{b}_{g,i}\\ \mathbf{b}_{a,i}\leftarrow\mathbf{b}_{a,i}+\delta\mathbf{b}_{a,i} bg,ibg,i+δbg,iba,iba,i+δba,i
理论上,零偏更新后,预积分观测量应该按 ( 3 ) (3) (3)重新计算,才能得到预积分测量值的修正 Δ R ~ i j , Δ v ~ i j , Δ p ~ i j \Delta\tilde{\mathbf{R}}_{ij},\Delta\tilde{\mathbf{v}}_{ij},\Delta\tilde{\mathbf{p}}_{ij} ΔR~ij,Δv~ij,Δp~ij。但这种方式计算代价过大,可以将预积分观测量看成零偏的函数,当零偏更新之后,通过一阶泰勒展开在原先预积分观测量的基础上进行修正,即
Δ R ~ i j ( b g , i + δ b g , i ) = E x p ( L o g ( Δ R ~ i j ( b g , i + δ b g , i ) ) ) ≈ E x p ( L o g ( Δ R ~ i j ( b g , i ) ) + ∂ L o g ( Δ R ~ i j ( b g , i ) ) ∂ b g , i ∣ b g , i δ b g , i ) = Δ R ~ i j ( b g , i ) E x p ( J r ( L o g ( Δ R ~ i j ( b g , i ) ) ) ∂ L o g ( Δ R ~ i j ( b g , i ) ) ∂ b g , i ∣ b g , i δ b g , i ) = Δ R ~ i j ( b g , i ) E x p ( ∂ Δ R ~ i j ∂ b g , i δ b g , i ) \begin{align*} \Delta\tilde{\mathbf{R}}_{ij}(\mathbf{b}_{g,i}+\delta\mathbf{b}_{g,i})&=\mathrm{Exp}(\mathrm{Log}(\Delta\tilde{\mathbf{R}}_{ij}(\mathbf{b}_{g,i}+\delta\mathbf{b}_{g,i})))\\ &\approx\mathrm{Exp}(\mathrm{Log}(\Delta\tilde{\mathbf{R}}_{ij}(\mathbf{b}_{g,i}))+\left.\frac{\partial\mathrm{Log}(\Delta\tilde{\mathbf{R}}_{ij}(\mathbf{b}_{g,i}))}{\partial\mathbf{b}_{g,i}}\right|_{\mathbf{b}_{g,i}}\delta\mathbf{b}_{g,i})\\ &=\Delta\tilde{\mathbf{R}}_{ij}(\mathbf{b}_{g,i})\mathrm{Exp}(\mathbf{J}_{r}(\mathrm{Log}(\Delta\tilde{\mathbf{R}}_{ij}(\mathbf{b}_{g,i})))\left.\frac{\partial\mathrm{Log}(\Delta\tilde{\mathbf{R}}_{ij}(\mathbf{b}_{g,i}))}{\partial\mathbf{b}_{g,i}}\right|_{\mathbf{b}_{g,i}}\delta\mathbf{b}_{g,i})\\ &=\Delta\tilde{\mathbf{R}}_{ij}(\mathbf{b}_{g,i})\mathrm{Exp}\left(\frac{\partial{\Delta\tilde{\mathbf{R}}_{ij}}}{\partial\mathbf{b}_{g,i}}\delta\mathbf{b}_{g,i}\right)\tag{17a} \end{align*} ΔR~ij(bg,i+δbg,i)=Exp(Log(ΔR~ij(bg,i+δbg,i)))Exp(Log(ΔR~ij(bg,i))+bg,iLog(ΔR~ij(bg,i)) bg,iδbg,i)=ΔR~ij(bg,i)Exp(Jr(Log(ΔR~ij(bg,i)))bg,iLog(ΔR~ij(bg,i)) bg,iδbg,i)=ΔR~ij(bg,i)Exp(bg,iΔR~ijδbg,i)(17a)
为简便起见,此处记 ∂ Δ R ~ i j ∂ b g , i = J r ( L o g ( Δ R ~ i j ( b g , i ) ) ) ∂ L o g ( Δ R ~ i j ( b g , i ) ) ∂ b g , i ∣ b g , i \frac{\partial{\Delta\tilde{\mathbf{R}}_{ij}}}{\partial\mathbf{b}_{g,i}}=\mathbf{J}_{r}(\mathrm{Log}(\Delta\tilde{\mathbf{R}}_{ij}(\mathbf{b}_{g,i})))\left.\frac{\partial\mathrm{Log}(\Delta\tilde{\mathbf{R}}_{ij}(\mathbf{b}_{g,i}))}{\partial\mathbf{b}_{g,i}}\right|_{\mathbf{b}_{g,i}} bg,iΔR~ij=Jr(Log(ΔR~ij(bg,i)))bg,iLog(ΔR~ij(bg,i)) bg,i
Δ v ~ i j ( b g , i + δ b g , i , b a , i + δ b a , i ) ≈ Δ v ~ i j ( b g , i , b a , i ) + ∂ Δ v ~ i j ( b g , i , b a , i ) ∂ b g , i ∣ b g , i , b a , i δ b g , i + ∂ Δ v ~ i j ( b g , i , b a , i ) ∂ b a , i ∣ b g , i , b a , i δ b a , i = Δ v ~ i j ( b g , i , b a , i ) + ∂ Δ v ~ i j ∂ b g , i δ b g , i + ∂ Δ v ~ i j ∂ b a , i δ b a , i Δ p ~ i j ( b g , i + δ b g , i , b a , i + δ b a , i ) ≈ Δ p ~ i j ( b g , i , b a , i ) + ∂ Δ p ~ i j ( b g , i , b a , i ) ∂ b g , i ∣ b g , i , b a , i δ b g , i + ∂ Δ p ~ i j ( b g , i , b a , i ) ∂ b a , i ∣ b g , i , b a , i δ b a , i = Δ p ~ i j ( b g , i , b a , i ) + ∂ Δ p ~ i j ∂ b g , i δ b g , i + ∂ Δ p ~ i j ∂ b a , i δ b a , i \begin{align*} \Delta\tilde{\mathbf{v}}_{ij}(\mathbf{b}_{g,i}+\delta\mathbf{b}_{g,i},\mathbf{b}_{a,i}+\delta\mathbf{b}_{a,i})&\approx\Delta\tilde{\mathbf{v}}_{ij}(\mathbf{b}_{g,i},\mathbf{b}_{a,i})+\left.\frac{\partial\Delta\tilde{\mathbf{v}}_{ij}(\mathbf{b}_{g,i},\mathbf{b}_{a,i})}{\partial\mathbf{b}_{g,i}}\right|_{\mathbf{b}_{g,i},\mathbf{b}_{a,i}}\delta\mathbf{b}_{g,i}+\left.\frac{\partial\Delta\tilde{\mathbf{v}}_{ij}(\mathbf{b}_{g,i},\mathbf{b}_{a,i})}{\partial\mathbf{b}_{a,i}}\right|_{\mathbf{b}_{g,i},\mathbf{b}_{a,i}}\delta\mathbf{b}_{a,i}\\ &=\Delta\tilde{\mathbf{v}}_{ij}(\mathbf{b}_{g,i},\mathbf{b}_{a,i})+\frac{\partial\Delta\tilde{\mathbf{v}}_{ij}}{\partial\mathbf{b}_{g,i}}\delta\mathbf{b}_{g,i}+\frac{\partial\Delta\tilde{\mathbf{v}}_{ij}}{\partial\mathbf{b}_{a,i}}\delta\mathbf{b}_{a,i}\tag{17b}\\ \Delta\tilde{\mathbf{p}}_{ij}(\mathbf{b}_{g,i}+\delta\mathbf{b}_{g,i},\mathbf{b}_{a,i}+\delta\mathbf{b}_{a,i})&\approx\Delta\tilde{\mathbf{p}}_{ij}(\mathbf{b}_{g,i},\mathbf{b}_{a,i})+\left.\frac{\partial\Delta\tilde{\mathbf{p}}_{ij}(\mathbf{b}_{g,i},\mathbf{b}_{a,i})}{\partial\mathbf{b}_{g,i}}\right|_{\mathbf{b}_{g,i},\mathbf{b}_{a,i}}\delta\mathbf{b}_{g,i}+\left.\frac{\partial\Delta\tilde{\mathbf{p}}_{ij}(\mathbf{b}_{g,i},\mathbf{b}_{a,i})}{\partial\mathbf{b}_{a,i}}\right|_{\mathbf{b}_{g,i},\mathbf{b}_{a,i}}\delta\mathbf{b}_{a,i}\\ &=\Delta\tilde{\mathbf{p}}_{ij}(\mathbf{b}_{g,i},\mathbf{b}_{a,i})+\frac{\partial\Delta\tilde{\mathbf{p}}_{ij}}{\partial\mathbf{b}_{g,i}}\delta\mathbf{b}_{g,i}+\frac{\partial\Delta\tilde{\mathbf{p}}_{ij}}{\partial\mathbf{b}_{a,i}}\delta\mathbf{b}_{a,i}\tag{17c}\\ \end{align*} Δv~ij(bg,i+δbg,i,ba,i+δba,i)Δp~ij(bg,i+δbg,i,ba,i+δba,i)Δv~ij(bg,i,ba,i)+bg,iΔv~ij(bg,i,ba,i) bg,i,ba,iδbg,i+ba,iΔv~ij(bg,i,ba,i) bg,i,ba,iδba,i=Δv~ij(bg,i,ba,i)+bg,iΔv~ijδbg,i+ba,iΔv~ijδba,iΔp~ij(bg,i,ba,i)+bg,iΔp~ij(bg,i,ba,i) bg,i,ba,iδbg,i+ba,iΔp~ij(bg,i,ba,i) bg,i,ba,iδba,i=Δp~ij(bg,i,ba,i)+bg,iΔp~ijδbg,i+ba,iΔp~ijδba,i(17b)(17c)
为简便起见,此处记

∂ Δ v ~ i j ∂ b g , i = ∂ Δ v ~ i j ( b g , i , b a , i ) ∂ b g , i ∣ b g , i , b a , i , ∂ Δ v ~ i j ∂ b a , i = ∂ Δ v ~ i j ( b g , i , b a , i ) ∂ b a , i ∣ b g , i , b a , i \frac{\partial\Delta\tilde{\mathbf{v}}_{ij}}{\partial\mathbf{b}_{g,i}}=\left.\frac{\partial\Delta\tilde{\mathbf{v}}_{ij}(\mathbf{b}_{g,i},\mathbf{b}_{a,i})}{\partial\mathbf{b}_{g,i}}\right|_{\mathbf{b}_{g,i},\mathbf{b}_{a,i}},\frac{\partial\Delta\tilde{\mathbf{v}}_{ij}}{\partial\mathbf{b}_{a,i}}=\left.\frac{\partial\Delta\tilde{\mathbf{v}}_{ij}(\mathbf{b}_{g,i},\mathbf{b}_{a,i})}{\partial\mathbf{b}_{a,i}}\right|_{\mathbf{b}_{g,i},\mathbf{b}_{a,i}} bg,iΔv~ij=bg,iΔv~ij(bg,i,ba,i) bg,i,ba,i,ba,iΔv~ij=ba,iΔv~ij(bg,i,ba,i) bg,i,ba,i

∂ Δ p ~ i j ∂ b g , i = ∂ Δ p ~ i j ( b g , i , b a , i ) ∂ b g , i ∣ b g , i , b a , i , ∂ Δ p ~ i j ∂ b a , i = ∂ Δ p ~ i j ( b g , i , b a , i ) ∂ b a , i ∣ b g , i , b a , i \frac{\partial\Delta\tilde{\mathbf{p}}_{ij}}{\partial\mathbf{b}_{g,i}}=\left.\frac{\partial\Delta\tilde{\mathbf{p}}_{ij}(\mathbf{b}_{g,i},\mathbf{b}_{a,i})}{\partial\mathbf{b}_{g,i}}\right|_{\mathbf{b}_{g,i},\mathbf{b}_{a,i}},\frac{\partial\Delta\tilde{\mathbf{p}}_{ij}}{\partial\mathbf{b}_{a,i}}=\left.\frac{\partial\Delta\tilde{\mathbf{p}}_{ij}(\mathbf{b}_{g,i},\mathbf{b}_{a,i})}{\partial\mathbf{b}_{a,i}}\right|_{\mathbf{b}_{g,i},\mathbf{b}_{a,i}} bg,iΔp~ij=bg,iΔp~ij(bg,i,ba,i) bg,i,ba,i,ba,iΔp~ij=ba,iΔp~ij(bg,i,ba,i) bg,i,ba,i

∂ Δ R ~ i j ∂ b g , i , ∂ Δ v ~ i j ∂ b g , i , ∂ Δ v ~ i j ∂ b a , i , ∂ Δ p ~ i j ∂ b g , i , ∂ Δ p ~ i j ∂ b a , i \frac{\partial{\Delta\tilde{\mathbf{R}}_{ij}}}{\partial\mathbf{b}_{g,i}},\frac{\partial\Delta\tilde{\mathbf{v}}_{ij}}{\partial\mathbf{b}_{g,i}},\frac{\partial\Delta\tilde{\mathbf{v}}_{ij}}{\partial\mathbf{b}_{a,i}},\frac{\partial\Delta\tilde{\mathbf{p}}_{ij}}{\partial\mathbf{b}_{g,i}},\frac{\partial\Delta\tilde{\mathbf{p}}_{ij}}{\partial\mathbf{b}_{a,i}} bg,iΔR~ij,bg,iΔv~ij,ba,iΔv~ij,bg,iΔp~ij,ba,iΔp~ij都称为雅可比矩阵,注意其中预积分旋转测量值对零偏的雅可比矩阵并不是由偏导数组成的数学上的雅可比矩阵。

下面通过展开并取对应项的方法求解上述各雅可比矩阵

4.1、预积分旋转测量值对零偏的雅可比矩阵
Δ R ~ i j ( b g , i + δ b g , i ) = ∏ k = i j − 1 E x p ( ( ω ~ k − ( b g , i + δ b g , i ) ) Δ t ) = Δ R ~ i j ∏ k = i j − 1 E x p ( − Δ R ~ k + 1 , j T J r , k δ b g , i Δ t ) ≈ Δ R ~ i j E x p ( − ∑ k = i j − 1 Δ R ~ k + 1 , j T J r , k δ b g , i Δ t ) \begin{align*} \Delta\tilde{\mathbf{R}}_{ij}(\mathbf{b}_{g,i}+\delta\mathbf{b}_{g,i})&=\prod_{k=i}^{j-1}\mathrm{Exp}((\tilde{\boldsymbol{\omega}}_{k}-(\mathbf{b}_{g,i}+\delta\mathbf{b}_{g,i}))\Delta{t})\\ &=\Delta\tilde{\mathbf{R}}_{ij}\prod_{k=i}^{j-1}\mathrm{Exp}(-\Delta\tilde{\mathbf{R}}_{k+1,j}^{T}\mathbf{J}_{r,k}\delta\mathbf{b}_{g,i}\Delta{t})\\ &\approx\Delta\tilde{\mathbf{R}}_{ij}\mathrm{Exp}(-\sum_{k=i}^{j-1}\Delta\tilde{\mathbf{R}}_{k+1,j}^{T}\mathbf{J}_{r,k}\delta\mathbf{b}_{g,i}\Delta{t})\tag{18} \end{align*} ΔR~ij(bg,i+δbg,i)=k=ij1Exp((ω~k(bg,i+δbg,i))Δt)=ΔR~ijk=ij1Exp(ΔR~k+1,jTJr,kδbg,iΔt)ΔR~ijExp(k=ij1ΔR~k+1,jTJr,kδbg,iΔt)(18)
其中第一行推导至第二行参考了 ( 5 ) (5) (5),第二行推导至第三行参考了 ( 11 ) (11) (11)的推导过程

比较 ( 17 ) (17) (17) ( 2 i 0 ) (2i_0) (2i0),可以得到
∂ Δ R ~ i j ∂ b g , i = − ∑ k = i j − 1 Δ R ~ k + 1 , j T J r , k Δ t (19) \frac{\partial{\Delta\tilde{\mathbf{R}}_{ij}}}{\partial\mathbf{b}_{g,i}}=-\sum_{k=i}^{j-1}\Delta\tilde{\mathbf{R}}_{k+1,j}^{T}\mathbf{J}_{r,k}\Delta{t}\tag{19} bg,iΔR~ij=k=ij1ΔR~k+1,jTJr,kΔt(19)
4.2、预积分速度测量值对零偏的雅可比矩阵
Δ v ~ i j ( b a , i + δ b g , i , b a , i + δ b a , i ) = ∑ k = i j − 1 Δ R ~ i k ( b a , i + δ b g , i ) ( a ~ k − b a , i − δ b a , i ) Δ t ≈ ∑ k = i j − 1 Δ R ~ i k ( b a , i ) E x p ( ∂ Δ R ~ i k ∂ b g , i δ b g , i ) ( a ~ k − b a , i − δ b a , i ) Δ t ≈ ∑ k = i j − 1 Δ R ~ i k ( b a , i ) ( I + ( ∂ Δ R ~ i k ∂ b g , i δ b g , i ) ∧ ) ( a ~ k − b a , i − δ b a , i ) Δ t = Δ v ~ i j ( b a , i , b a , i ) − ∑ k = i j − 1 Δ R ~ i k ( b a , i ) δ b a , i Δ t − ∑ k = i j − 1 Δ R ~ i k ( b a , i ) ( a ~ k − b a , i ) ∧ ∂ Δ R ~ i k ∂ b g , i δ b g , i Δ t \begin{align*} \Delta\tilde{\mathbf{v}}_{ij}(\mathbf{b}_{a,i}+\delta\mathbf{b}_{g,i},\mathbf{b}_{a,i}+\delta\mathbf{b}_{a,i})&=\sum_{k=i}^{j-1}\Delta\tilde{\mathbf{R}}_{ik}(\mathbf{b}_{a,i}+\delta\mathbf{b}_{g,i})(\tilde{\mathbf{a}}_{k}-\mathbf{b}_{a,i}-\delta\mathbf{b}_{a,i})\Delta{t}\\ &\approx\sum_{k=i}^{j-1}\Delta\tilde{\mathbf{R}}_{ik}(\mathbf{b}_{a,i})\mathrm{Exp}(\frac{\partial{\Delta\tilde{\mathbf{R}}_{ik}}}{\partial\mathbf{b}_{g,i}}\delta\mathbf{b}_{g,i})(\tilde{\mathbf{a}}_{k}-\mathbf{b}_{a,i}-\delta\mathbf{b}_{a,i})\Delta{t}\\ &\approx\sum_{k=i}^{j-1}\Delta\tilde{\mathbf{R}}_{ik}(\mathbf{b}_{a,i})\left(\mathbf{I}+\left(\frac{\partial{\Delta\tilde{\mathbf{R}}_{ik}}}{\partial\mathbf{b}_{g,i}}\delta\mathbf{b}_{g,i}\right)^{\wedge}\right)(\tilde{\mathbf{a}}_{k}-\mathbf{b}_{a,i}-\delta\mathbf{b}_{a,i})\Delta{t}\\ &=\Delta\tilde{\mathbf{v}}_{ij}(\mathbf{b}_{a,i},\mathbf{b}_{a,i})-\sum_{k=i}^{j-1}\Delta\tilde{\mathbf{R}}_{ik}(\mathbf{b}_{a,i})\delta\mathbf{b}_{a,i}\Delta{t}-\sum_{k=i}^{j-1}\Delta\tilde{\mathbf{R}}_{ik}(\mathbf{b}_{a,i})(\tilde{\mathbf{a}}_{k}-\mathbf{b}_{a,i})^{\wedge}\frac{\partial{\Delta\tilde{\mathbf{R}}_{ik}}}{\partial\mathbf{b}_{g,i}}\delta\mathbf{b}_{g,i}\Delta{t}\tag{20} \end{align*} Δv~ij(ba,i+δbg,i,ba,i+δba,i)=k=ij1ΔR~ik(ba,i+δbg,i)(a~kba,iδba,i)Δtk=ij1ΔR~ik(ba,i)Exp(bg,iΔR~ikδbg,i)(a~kba,iδba,i)Δtk=ij1ΔR~ik(ba,i)(I+(bg,iΔR~ikδbg,i))(a~kba,iδba,i)Δt=Δv~ij(ba,i,ba,i)k=ij1ΔR~ik(ba,i)δba,iΔtk=ij1ΔR~ik(ba,i)(a~kba,i)bg,iΔR~ikδbg,iΔt(20)
从第三行推导至第四行舍去了高阶小项 ( ∂ Δ R ~ i k ∂ b g , i δ b g , i ) ∧ δ b a , i \left(\frac{\partial{\Delta\tilde{\mathbf{R}}_{ik}}}{\partial\mathbf{b}_{g,i}}\delta\mathbf{b}_{g,i}\right)^{\wedge}\delta\mathbf{b}_{a,i} (bg,iΔR~ikδbg,i)δba,i

比较 ( 18 ) (18) (18) ( 22 ) (22) (22),可以得到
∂ Δ v ~ i j ∂ b g , i = − ∑ k = i j − 1 Δ R ~ i k ( b g , i ) ( a ~ k − b a , i ) ∧ ∂ Δ R ~ i k ∂ b g , i Δ t ∂ Δ v ~ i j ∂ b a , i = − ∑ k = i j − 1 Δ R ~ i k ( b g , i ) Δ t \begin{align*} \frac{\partial{\Delta\tilde{\mathbf{v}}_{ij}}}{\partial\mathbf{b}_{g,i}}&=-\sum_{k=i}^{j-1}\Delta\tilde{\mathbf{R}}_{ik}(\mathbf{b}_{g,i})(\tilde{\mathbf{a}}_{k}-\mathbf{b}_{a,i})^{\wedge}\frac{\partial{\Delta\tilde{\mathbf{R}}_{ik}}}{\partial\mathbf{b}_{g,i}}\Delta{t}\tag{21}\\ \frac{\partial{\Delta\tilde{\mathbf{v}}_{ij}}}{\partial\mathbf{b}_{a,i}}&=-\sum_{k=i}^{j-1}\Delta\tilde{\mathbf{R}}_{ik}(\mathbf{b}_{g,i})\Delta{t}\tag{22}\\ \end{align*} bg,iΔv~ijba,iΔv~ij=k=ij1ΔR~ik(bg,i)(a~kba,i)bg,iΔR~ikΔt=k=ij1ΔR~ik(bg,i)Δt(21)(22)
4.3、预积分位移测量值对零偏的雅可比矩阵
Δ p ~ i j ( b g , i + δ b g , i , b a , i + δ b a , i ) = ∑ k = i j − 1 [ Δ v ~ i j ( b g , i + δ b g , i , b a , i + δ b a , i ) Δ t + 1 2 Δ R ~ i j ( b g , i + δ b g , i ) ( a ~ k − b a , i − δ b a , i ) Δ t 2 ] ≈ ∑ k = i j − 1 [ ( Δ v ~ i j ( b g , i , b a , i ) + ∂ Δ v ~ i j ∂ b g , i δ b g , i + ∂ Δ v ~ i j ∂ b a , i δ b a , i ) Δ t + 1 2 Δ R ~ i k ( b g , i ) ( I + ( ∂ Δ R ~ i k ∂ b g , i δ b g , i ) ∧ ) ( a ~ k − b a , i − δ b a , i ) Δ t 2 ] ≈ Δ p ~ i j ( b g , i , b a , i ) + ∑ k = i j − 1 [ ∂ Δ v ~ i j ∂ b a , i Δ t − 1 2 Δ R ~ i k Δ t 2 ] δ b a , i + ∑ k = i j − 1 [ ∂ Δ v ~ i j ∂ b g , i Δ t − 1 2 Δ R ~ i k ( b g , i ) ( a ~ k − b a , i ) ∧ ∂ Δ R ~ i k ∂ b g , i Δ t 2 ] δ b g , i \begin{align*} \Delta\tilde{\mathbf{p}}_{ij}(\mathbf{b}_{g,i}+\delta\mathbf{b}_{g,i},\mathbf{b}_{a,i}+\delta\mathbf{b}_{a,i})&=\sum_{k=i}^{j-1}\left[\Delta\tilde{\mathbf{v}}_{ij}(\mathbf{b}_{g,i}+\delta\mathbf{b}_{g,i},\mathbf{b}_{a,i}+\delta\mathbf{b}_{a,i})\Delta{t}+\frac{1}{2}\Delta\tilde{\mathbf{R}}_{ij}(\mathbf{b}_{g,i}+\delta\mathbf{b}_{g,i})(\tilde{\mathbf{a}}_{k}-\mathbf{b}_{a,i}-\delta\mathbf{b}_{a,i})\Delta{t}^{2}\right]\\ &\approx\sum_{k=i}^{j-1}\left[\left(\Delta\tilde{\mathbf{v}}_{ij}(\mathbf{b}_{g,i},\mathbf{b}_{a,i})+\frac{\partial\Delta\tilde{\mathbf{v}}_{ij}}{\partial\mathbf{b}_{g,i}}\delta\mathbf{b}_{g,i}+\frac{\partial\Delta\tilde{\mathbf{v}}_{ij}}{\partial\mathbf{b}_{a,i}}\delta\mathbf{b}_{a,i}\right)\Delta{t}+\frac{1}{2}\Delta\tilde{\mathbf{R}}_{ik}(\mathbf{b}_{g,i})\left(\mathbf{I}+\left(\frac{\partial{\Delta\tilde{\mathbf{R}}_{ik}}}{\partial\mathbf{b}_{g,i}}\delta\mathbf{b}_{g,i}\right)^{\wedge}\right)(\tilde{\mathbf{a}}_{k}-\mathbf{b}_{a,i}-\delta\mathbf{b}_{a,i})\Delta{t}^{2}\right]\\ &\approx\Delta\tilde{\mathbf{p}}_{ij}(\mathbf{b}_{g,i},\mathbf{b}_{a,i})+\sum_{k=i}^{j-1}\left[\frac{\partial{\Delta\tilde{\mathbf{v}}_{ij}}}{\partial\mathbf{b}_{a,i}}\Delta{t}-\frac{1}{2}\Delta\tilde{\mathbf{R}}_{ik}\Delta{t}^{2}\right]\delta\mathbf{b}_{a,i}+\sum_{k=i}^{j-1}\left[\frac{\partial{\Delta\tilde{\mathbf{v}}_{ij}}}{\partial\mathbf{b}_{g,i}}\Delta{t}-\frac{1}{2}\Delta\tilde{\mathbf{R}}_{ik}(\mathbf{b}_{g,i})(\tilde{\mathbf{a}}_{k}-\mathbf{b}_{a,i})^{\wedge}\frac{\partial{\Delta\tilde{\mathbf{R}}_{ik}}}{\partial\mathbf{b}_{g,i}}\Delta{t}^{2}\right]\delta\mathbf{b}_{g,i}\tag{23}\\ \end{align*} Δp~ij(bg,i+δbg,i,ba,i+δba,i)=k=ij1[Δv~ij(bg,i+δbg,i,ba,i+δba,i)Δt+21ΔR~ij(bg,i+δbg,i)(a~kba,iδba,i)Δt2]k=ij1[(Δv~ij(bg,i,ba,i)+bg,iΔv~ijδbg,i+ba,iΔv~ijδba,i)Δt+21ΔR~ik(bg,i)(I+(bg,iΔR~ikδbg,i))(a~kba,iδba,i)Δt2]Δp~ij(bg,i,ba,i)+k=ij1[ba,iΔv~ijΔt21ΔR~ikΔt2]δba,i+k=ij1[bg,iΔv~ijΔt21ΔR~ik(bg,i)(a~kba,i)bg,iΔR~ikΔt2]δbg,i(23)
其中,第二行推导至第三行与 ( 22 ) (22) (22)推导过程类似,省略了高阶小项

比较 ( 19 ) (19) (19) ( 25 ) (25) (25),可以得到
∂ Δ p ~ i j ∂ b g , i = ∑ k = i j − 1 [ ∂ Δ v ~ i j ∂ b g , i Δ t − 1 2 Δ R ~ i k ( b g , i ) ( a ~ k − b a , i ) ∧ ∂ Δ R ~ i k ∂ b g , i Δ t 2 ] ∂ Δ p ~ i j ∂ b a , i = ∑ k = i j − 1 [ ∂ Δ v ~ i j ∂ b a , i Δ t − 1 2 Δ R ~ i k Δ t 2 ] \begin{align*} \frac{\partial{\Delta\tilde{\mathbf{p}}_{ij}}}{\partial\mathbf{b}_{g,i}}&=\sum_{k=i}^{j-1}\left[\frac{\partial{\Delta\tilde{\mathbf{v}}_{ij}}}{\partial\mathbf{b}_{g,i}}\Delta{t}-\frac{1}{2}\Delta\tilde{\mathbf{R}}_{ik}(\mathbf{b}_{g,i})(\tilde{\mathbf{a}}_{k}-\mathbf{b}_{a,i})^{\wedge}\frac{\partial{\Delta\tilde{\mathbf{R}}_{ik}}}{\partial\mathbf{b}_{g,i}}\Delta{t}^{2}\right]\tag{24}\\ \frac{\partial{\Delta\tilde{\mathbf{p}}_{ij}}}{\partial\mathbf{b}_{a,i}}&=\sum_{k=i}^{j-1}\left[\frac{\partial{\Delta\tilde{\mathbf{v}}_{ij}}}{\partial\mathbf{b}_{a,i}}\Delta{t}-\frac{1}{2}\Delta\tilde{\mathbf{R}}_{ik}\Delta{t}^{2}\right]\tag{25}\\ \end{align*} bg,iΔp~ijba,iΔp~ij=k=ij1[bg,iΔv~ijΔt21ΔR~ik(bg,i)(a~kba,i)bg,iΔR~ikΔt2]=k=ij1[ba,iΔv~ijΔt21ΔR~ikΔt2](24)(25)
4.4、将雅可比矩阵归结至递推形式

( 21 ) , ( 23 ) , ( 24 ) , ( 26 ) , ( 27 ) (21),(23),(24),(26),(27) (21),(23),(24),(26),(27)中的雅可比矩阵是累加形式的,若 j > i j>i j>i,可以参考把它们归结至递推形式
∂ Δ R ~ i j ∂ b g , i = Δ R ~ j − 1 , j T ∂ Δ R ~ i , j − 1 ∂ b g , i − J r , j − 1 Δ t ∂ Δ v ~ i j ∂ b g , i = ∂ Δ v ~ i , j − 1 ∂ b g , i − Δ R ~ i , j − 1 ( a ~ j − 1 − b a , i ) ∧ ∂ Δ R ~ i , j − 1 ∂ b g , i Δ t ∂ Δ v ~ i j ∂ b a , i = ∂ Δ v ~ i , j − 1 ∂ b a , i − Δ R ~ i , j − 1 Δ t ∂ Δ p ~ i j ∂ b g , i = ∂ Δ p ~ i , j − 1 ∂ b g , i − ∂ Δ v ~ i , j − 1 ∂ b a , i Δ t − 1 2 Δ R ~ i , j − 1 ( a ~ j − 1 − b a , i ) ∧ ∂ Δ R ~ i , j − 1 ∂ b g , i Δ t 2 ∂ Δ p ~ i j ∂ b a , i = ∂ Δ p ~ i , j − 1 ∂ b g , i − ∂ Δ v ~ i , j − 1 ∂ b g , i Δ t − 1 2 Δ R ~ i , j − 1 Δ t 2 \begin{align*} \frac{\partial{\Delta\tilde{\mathbf{R}}_{ij}}}{\partial\mathbf{b}_{g,i}}&=\Delta\tilde{\mathbf{R}}_{j-1,j}^{T}\frac{\partial{\Delta\tilde{\mathbf{R}}_{i,j-1}}}{\partial\mathbf{b}_{g,i}}-\mathbf{J}_{r,j-1}\Delta{t}\tag{26a}\\ \frac{\partial{\Delta\tilde{\mathbf{v}}_{ij}}}{\partial\mathbf{b}_{g,i}}&=\frac{\partial{\Delta\tilde{\mathbf{v}}_{i,j-1}}}{\partial\mathbf{b}_{g,i}}-\Delta\tilde{\mathbf{R}}_{i,j-1}(\tilde{\mathbf{a}}_{j-1}-\mathbf{b}_{a,i})^{\wedge}\frac{\partial{\Delta\tilde{\mathbf{R}}_{i,j-1}}}{\partial\mathbf{b}_{g,i}}\Delta{t}\tag{26b}\\ \frac{\partial{\Delta\tilde{\mathbf{v}}_{ij}}}{\partial\mathbf{b}_{a,i}}&=\frac{\partial{\Delta\tilde{\mathbf{v}}_{i,j-1}}}{\partial\mathbf{b}_{a,i}}-\Delta\tilde{\mathbf{R}}_{i,j-1}\Delta{t}\tag{26c}\\ \frac{\partial{\Delta\tilde{\mathbf{p}}_{ij}}}{\partial\mathbf{b}_{g,i}}&=\frac{\partial{\Delta\tilde{\mathbf{p}}_{i,j-1}}}{\partial\mathbf{b}_{g,i}}-\frac{\partial{\Delta\tilde{\mathbf{v}}_{i,j-1}}}{\partial\mathbf{b}_{a,i}}\Delta{t}-\frac{1}{2}\Delta\tilde{\mathbf{R}}_{i,j-1}(\tilde{\mathbf{a}}_{j-1}-\mathbf{b}_{a,i})^{\wedge}\frac{\partial{\Delta\tilde{\mathbf{R}}_{i,j-1}}}{\partial\mathbf{b}_{g,i}}\Delta{t}^{2}\tag{26d}\\ \frac{\partial{\Delta\tilde{\mathbf{p}}_{ij}}}{\partial\mathbf{b}_{a,i}}&=\frac{\partial{\Delta\tilde{\mathbf{p}}_{i,j-1}}}{\partial\mathbf{b}_{g,i}}-\frac{\partial{\Delta\tilde{\mathbf{v}}_{i,j-1}}}{\partial\mathbf{b}_{g,i}}\Delta{t}-\frac{1}{2}\Delta\tilde{\mathbf{R}}_{i,j-1}\Delta{t}^{2}\tag{26e}\\ \end{align*} bg,iΔR~ijbg,iΔv~ijba,iΔv~ijbg,iΔp~ijba,iΔp~ij=ΔR~j1,jTbg,iΔR~i,j1Jr,j1Δt=bg,iΔv~i,j1ΔR~i,j1(a~j1ba,i)bg,iΔR~i,j1Δt=ba,iΔv~i,j1ΔR~i,j1Δt=bg,iΔp~i,j1ba,iΔv~i,j1Δt21ΔR~i,j1(a~j1ba,i)bg,iΔR~i,j1Δt2=bg,iΔp~i,j1bg,iΔv~i,j1Δt21ΔR~i,j1Δt2(26a)(26b)(26c)(26d)(26e)

5、预积分的优化目标

X k X_{k} Xk表示直到 k k k时刻的全部关键帧,即
X k = { x i } i ∈ K k X_{k}=\{\mathbf{x}_{i}\}_{i\in{K}_{k}} Xk={xi}iKk
其中 K k = { i 0 , i 1 , ⋯   } K_{k}=\{i_{0},i_{1},\cdots\} Kk={i0,i1,}表示直到 k k k时刻包含关键帧的全部时刻

I i j I_{ij} Iij表示两个连续的关键帧,即第 i i i时刻关键帧和第 j j j时刻关键帧之间的IMU测量, O i O_{i} Oi表示GNSS等低频传感器第 i i i时刻的观测,故直到 k k k时刻的全部测量值组成的集合为
Z k = { I i j , O i } i , j ∈ K k Z_{k}=\{I_{ij},O_{i}\}_{i,j\in{K}_{k}} Zk={Iij,Oi}i,jKk
给定 Z k Z_{k} Zk和先验概率 p ( X i 0 ) p(X_{i_0}) p(Xi0)的条件下, X k X_{k} Xk的后验概率可以表示为
p ( X k ∣ Z K ) ∝ p ( X k ) p ( Z k ∣ X k ) = p ( x i 0 ) ∏ i , j ∈ K k p ( b j ∣ b i ) ∏ i , j ∈ K k p ( I i j ∣ x i , x j ) ∏ i ∈ K k p ( O i ∣ x i ) \begin{align*} p(X_{k}|Z_{K}) &\propto{p}(X_{k})p(Z_{k}|X_{k})\\ &={p}(\mathbf{x}_{i_{0}}) \prod_{i,j\in{K}_{k}}p(\mathbf{b}_{j}|\mathbf{b}_{i}) \prod_{i,j\in{K}_{k}}p(I_{ij}|\mathbf{x}_{i},\mathbf{x}_{j}) \prod_{i\in{K}_{k}}p(O_{i}|\mathbf{x}_{i})\tag{27} \end{align*} p(XkZK)p(Xk)p(ZkXk)=p(xi0)i,jKkp(bjbi)i,jKkp(Iijxi,xj)iKkp(Oixi)(27)
优化目标是最大化 ( 27 ) (27) (27)式的后验概率
X k ∗ = arg ⁡ max ⁡ X k   p ( X k ∣ Z k ) (28) X_{k}^{\ast}=\underset{X_{k}}{\arg\max}\,p(X_{k}|Z_{k})\tag{28} Xk=Xkargmaxp(XkZk)(28)
最大化后验概率等价于最小化后验概率的负对数,因此可将 ( 28 ) (28) (28)写成
X k ∗ = arg ⁡ min ⁡ X k − log ⁡ p ( X k ∣ Z k ) (29) X_{k}^{\ast}=\underset{X_{k}}{\arg\min}-\log{p(X_{k}|Z_{k})}\tag{29} Xk=Xkargminlogp(XkZk)(29)
不妨 ( 27 ) (27) (27)中各概率服从高斯分布, p ( x i 0 ) ∝ exp ⁡ { − 1 2 ∥ r x i 0 ∥ Σ ( x i 0 ) 2 } p(\mathbf{x}_{i_0})\propto\exp\left\{-\frac{1}{2}\|\mathbf{r}_{\mathbf{x}_{i_0}}\|^{2}_{\boldsymbol\Sigma(\mathbf{x}_{i_0})}\right\} p(xi0)exp{21rxi0Σ(xi0)2} p ( b j ∣ b i ) ∝ exp ⁡ { − 1 2 ∥ r b j ∥ Σ ( b j ) 2 } p(\mathbf{b}_{j}|\mathbf{b}_{i})\propto\exp\left\{-\frac{1}{2}\|\mathbf{r}_{\mathbf{b}_{j}}\|^{2}_{\boldsymbol\Sigma(\mathbf{b}_{j})}\right\} p(bjbi)exp{21rbjΣ(bj)2} p ( I i j ∣ x i , x j ) ∝ exp ⁡ { − 1 2 ∥ r Δ x i j ∥ Σ ( δ ( Δ x i i ) ) 2 } p(I_{ij}|\mathbf{x}_{i},\mathbf{x}_{j})\propto\exp\left\{-\frac{1}{2}\|\mathbf{r}_{\Delta\mathbf{x}_{ij}}\|^{2}_{\boldsymbol\Sigma(\delta(\Delta\mathbf{x}_{ii}))}\right\} p(Iijxi,xj)exp{21rΔxijΣ(δ(Δxii))2} p ( O i ∣ x i ) ∝ exp ⁡ { − 1 2 ∥ r z i ∥ Σ ( z i ) 2 } p(O_{i}|\mathbf{x}_{i})\propto\exp\left\{-\frac{1}{2}\|\mathbf{r}_{\mathbf{z}_{i}}\|^{2}_{\boldsymbol\Sigma(\mathbf{z}_{i})}\right\} p(Oixi)exp{21rziΣ(zi)2},此时 ( 29 ) (29) (29)可写成
X k ∗ = arg ⁡ min ⁡ X k ( ∥ r x i 0 ∥ Σ ( x i 0 ) 2 + ∑ i , j ∈ K k ∥ r b j ∥ Σ ( b j ) 2 + ∑ i , j ∈ K k ∥ r Δ x i j ∥ Σ ( δ ( Δ x i i ) ) 2 + ∑ i ∈ K k ∥ r z i ∥ Σ ( z i ) 2 ) \begin{align*} X_{k}^{\ast} =\underset{X_{k}}{\arg\min}\left(\|\mathbf{r}_{\mathbf{x}_{i_{0}}}\|^{2}_{\boldsymbol\Sigma(\mathbf{x}_{i_{0}})} +\sum_{i,j\in{K}_{k}}\|\mathbf{r}_{\mathbf{b}_{j}}\|^{2}_{\boldsymbol\Sigma(\mathbf{b}_{j})} +\sum_{i,j\in{K}_{k}}\|\mathbf{r}_{\Delta\mathbf{x}_{ij}}\|^{2}_{\boldsymbol\Sigma(\delta(\Delta\mathbf{x}_{ii}))} +\sum_{i \in{K}_{k}}\|\mathbf{r}_{\mathbf{z}_{i}}\|^{2}_{\boldsymbol\Sigma(\mathbf{z}_{i})} \right)\tag{30} \end{align*} Xk=Xkargmin rxi0Σ(xi0)2+i,jKkrbjΣ(bj)2+i,jKkrΔxijΣ(δ(Δxii))2+iKkrziΣ(zi)2 (30)
其中 r x i 0 , r b j , r Δ x i j , r z i \mathbf{r}_{\mathbf{x}_{i_0}},\mathbf{r}_{\mathbf{b}_j},\mathbf{r}_{\Delta\mathbf{x}_{ij}},\mathbf{r}_{\mathbf{z}_{i}} rxi0,rbj,rΔxij,rzi分别称为先验残差,递推残差,预积分残差,第 i i i时刻的观测残差

下面讨论各残差的具体形式:

先验残差 r x i 0 = [ r R i 0 T , r v i 0 T , r p 0 T , r b g , i 0 T , r b a , i 0 T ] T \mathbf{r}_{\mathbf{x}_{i_{0}}}=[\mathbf{r}_{\mathbf{R}_{i_{0}}}^{T},\mathbf{r}_{\mathbf{v}_{i_{0}}}^{T},\mathbf{r}_{\mathbf{p}_{0}}^{T},\mathbf{r}_{\mathbf{b}_{g,i_{0}}}^{T},\mathbf{r}_{\mathbf{b}_{a,i_{0}}}^{T}]^{T} rxi0=[rRi0T,rvi0T,rp0T,rbg,i0T,rba,i0T]T,其中
r R i 0 = L o g ( R ˇ i 0 T R i 0 ) r v i 0 = v i 0 − v ˇ i 0 r p i 0 = p i 0 − p ˇ i 0 r b g , i 0 = b g , i 0 − b ˇ g , i 0 r b a , i 0 = b a , i 0 − b ˇ a , i 0 \begin{align*} \mathbf{r}_{\mathbf{R}_{i_0}}&=\mathrm{Log}(\check{\mathbf{R}}^{T}_{i_0}\mathbf{R}_{i_0})\tag{31a}\\ \mathbf{r}_{\mathbf{v}_{i_0}}&=\mathbf{v}_{i_0}-\check{\mathbf{v}}_{i_0}\tag{31b}\\ \mathbf{r}_{\mathbf{p}_{i_0}}&=\mathbf{p}_{i_0}-\check{\mathbf{p}}_{i_0}\tag{31c}\\ \mathbf{r}_{\mathbf{b}_{g,i_0}}&=\mathbf{b}_{g,i_0}-\check{\mathbf{b}}_{g,i_0}\tag{31d}\\ \mathbf{r}_{\mathbf{b}_{a,i_0}}&=\mathbf{b}_{a,i_0}-\check{\mathbf{b}}_{a,i_0}\tag{31e}\\ \end{align*} rRi0rvi0rpi0rbg,i0rba,i0=Log(Rˇi0TRi0)=vi0vˇi0=pi0pˇi0=bg,i0bˇg,i0=ba,i0bˇa,i0(31a)(31b)(31c)(31d)(31e)
分别称为先验旋转残差,先验速度残差,先验位移残差,先验陀螺仪零偏残差,先验加速度计零偏残差。 [ R ˇ i 0 , v ˇ i 0 , p ˇ i 0 , b ˇ g , i 0 , b ˇ a , i 0 ] [\check{\mathbf{R}}_{i_0},\check{\mathbf{v}}_{i_0},\check{\mathbf{p}}_{i_0},\check{\mathbf{b}}_{g,i_0},\check{\mathbf{b}}_{a,i_0}] [Rˇi0,vˇi0,pˇi0,bˇg,i0,bˇa,i0]为先验,是已知的或上次优化的结果。暂不讨论 Σ ( x i 0 ) \boldsymbol\Sigma(\mathbf{x}_{i_0}) Σ(xi0)求解。

递推残差可写为 r b j = [ r b g , j T , r b a , j T ] T \mathbf{r}_{\mathbf{b}_{j}}=[\mathbf{r}_{\mathbf{b}_{g,j}}^{T},\mathbf{r}_{\mathbf{b}_{a,j}}^{T}]^{T} rbj=[rbg,jT,rba,jT]T,其中
r b g , j = b g , j − b g , i r b a , j = b a , j − b a , i \begin{align*} \mathbf{r}_{\mathbf{b}_{g,j}}=\mathbf{b}_{g,j}-\mathbf{b}_{g,i}\tag{32a}\\ \mathbf{r}_{\mathbf{b}_{a,j}}=\mathbf{b}_{a,j}-\mathbf{b}_{a,i}\tag{32b}\\ \end{align*} rbg,j=bg,jbg,irba,j=ba,jba,i(32a)(32b)
分别称为递推陀螺仪零偏残差和递推加速度计零偏残差。暂不讨论 Σ ( b j ) \boldsymbol\Sigma(\mathbf{b}_{j}) Σ(bj)求解。

预积分残差 r Δ x i j = [ r Δ R i j T , r Δ v i j T , r Δ p i j T ] T \mathbf{r}_{\Delta\mathbf{x}_{ij}}=[\mathbf{r}_{\Delta\mathbf{R}_{ij}}^{T},\mathbf{r}_{\Delta\mathbf{v}_{ij}}^{T},\mathbf{r}_{\Delta\mathbf{p}_{ij}}^{T}]^{T} rΔxij=[rΔRijT,rΔvijT,rΔpijT]T,其中
r Δ R i j = d e f L o g [ ( Δ R ~ i j ) T Δ R i j ] r Δ v i j = d e f Δ v i j − Δ v ~ i j r Δ p i j = d e f Δ p i j − Δ p ~ i j \begin{align*} \mathbf{r}_{\Delta\mathbf{R}_{ij}}&\overset{\mathrm{def}}{=}\mathrm{Log}\left[(\Delta{\tilde{\mathbf{R}}}_{ij})^{T}\Delta{\mathbf{R}}_{ij}\right]\tag{33a}\\ \mathbf{r}_{\Delta\mathbf{v}_{ij}}&\overset{\mathrm{def}}{=}\Delta{\mathbf{v}}_{ij}-\Delta{\tilde{\mathbf{v}}}_{ij}\tag{33b}\\ \mathbf{r}_{\Delta\mathbf{p}_{ij}}&\overset{\mathrm{def}}{=}\Delta{\mathbf{p}}_{ij}-\Delta{\tilde{\mathbf{p}}}_{ij}\tag{33c}\\ \end{align*} rΔRijrΔvijrΔpij=defLog[(ΔR~ij)TΔRij]=defΔvijΔv~ij=defΔpijΔp~ij(33a)(33b)(33c)
分别称为预积分旋转残差,预积分速度残差,预积分位移残差。对应的协方差矩阵为通过迭代 ( 16 ) (16) (16)求出的 Σ ( δ ( Δ x i i ) ) \boldsymbol\Sigma(\delta(\Delta\mathbf{x}_{ii})) Σ(δ(Δxii))

观测残差 r z i \mathbf{r}_{\mathbf{z}_{i}} rzi Σ ( z i ) \boldsymbol\Sigma(\mathbf{z}_{i}) Σ(zi)取决于传感器,在实验部分再进行讨论。

通过增量 δ ϕ , δ p , δ v , δ b g , δ b a \delta\boldsymbol{\phi},\delta\mathbf{p},\delta\mathbf{v},\delta\mathbf{b}_{g},\delta\mathbf{b}_{a} δϕ,δp,δv,δbg,δba可以更新系统状态 x \mathbf{x} x,增量作用如下
R ← R E x p ( δ ϕ ) p ← p + R δ p v ← v + δ v b g ← b g + δ b g b a ← b + δ b a \begin{array}{ll} &\mathbf{R}\leftarrow\mathbf{R}\mathrm{Exp}(\delta\boldsymbol{\phi})\\ &\mathbf{p}\leftarrow\mathbf{p}+\mathbf{R}\delta\mathbf{p}\\ &\mathbf{v}\leftarrow\mathbf{v}+\delta\mathbf{v}\\ &\mathbf{b}_{g}\leftarrow\mathbf{b}_{g}+\delta\mathbf{b}_{g}\\ &\mathbf{b}_{a}\leftarrow\mathbf{b}+\delta\mathbf{b}_{a} \end{array} RRExp(δϕ)pp+Rδpvv+δvbgbg+δbgbab+δba
在不考虑相关性的前提下,可以假设每个增量单独作用,即其产生作用时其他增量为零,将残差视为该增量的函数,下面通过展开求解残差相对于每个状态增量的雅可比矩阵

  • 6
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小于小于大橙子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值