一阶系统分析(实践演练)

一阶微分方程是最简单的也是最常用的动态函数关系,掌握一阶微分方程的相关概念与联系,至关重要。

时域微分方程

一阶微分方程可用以下公式描述:
a d x d t + b x = c a\frac{dx}{dt}+bx=c adtdx+bx=c

时域求解

齐次微分方程求解

齐次微分方程形式如下,类似零输入响应:
a d x d t + b x = 0 假设解有如下形式: x ( t ) = C e − t / τ 带入上式可得: − a C 1 τ e − t / τ + b C e − t / τ = 0 由于 e − t / τ ≠ 0 − a C 1 τ + b C = 0 ⟹ τ = a b x ( t ) = C e − b a t 再根据初值可计算 C 的值; C = x ( 0 ) a\frac{dx}{dt}+bx=0 \\ \text{假设解有如下形式:} \\ x\left( t \right) =Ce^{-t/\tau} \\ \text{带入上式可得:} \\ -aC\frac{1}{\tau}e^{-t/\tau}+bCe^{-t/\tau}=0 \\ \text{由于}e^{-t/\tau}\ne 0 \\ -aC\frac{1}{\tau}+bC=0\Longrightarrow \tau =\frac{a}{b} \\ x\left( t \right) =Ce^{-\frac{b}{a}t} \\ \text{再根据初值可计算}C\text{的值;} \\ C=x\left( 0 \right) \\ adtdx+bx=0假设解有如下形式:x(t)=Cet/τ带入上式可得:aCτ1et/τ+bCet/τ=0由于et/τ=0aCτ1+bC=0τ=bax(t)=Ceabt再根据初值可计算C的值;C=x(0)

非齐次微分方程求解

以最简单的非齐次微分方程为例:
a d x d t + b x = c d x d t + b a x = c a    ( 1 ) 根据齐次微分方程的结论: 构造分布积分的配合项 e A ( t ) 其中 A ( t ) = b a t    ( 1 ) 式左右两边乘以: e A ( t ) d x d t e b a t + b a x e b a t = c a e b a t    d d t [ e b a t x ] = c a e b a t    两边同时积分: e b a t x = ∫ c a e b a t d t = c b e b a t + C x ( t ) = c b + C e − b a t 取任意时刻的 x ( t ) 可计算得到 C 。 x ( 0 − ) = c b + C ⇒    C = x ( 0 − ) − c b x ( t ) = c b + ( x ( 0 − ) − c b ) e − b a t a\frac{dx}{dt}+bx=c \\ \frac{dx}{dt}+\frac{b}{a}x=\frac{c}{a}\,\,\left( 1 \right) \\ \text{根据齐次微分方程的结论:} \\ \text{构造分布积分的配合项}e^{A\left( t \right)}\text{其中}A\left( t \right) =\frac{b}{a}t \\ \,\,\left( 1 \right) \text{式左右两边乘以:}e^{A\left( t \right)} \\ \frac{dx}{dt}e^{\frac{b}{a}t}+\frac{b}{a}xe^{\frac{b}{a}t}=\frac{c}{a}e^{\frac{b}{a}t}\,\, \\ \frac{d}{dt}\left[ e^{\frac{b}{a}t}x \right] =\frac{c}{a}e^{\frac{b}{a}t}\,\, \\ \text{两边同时积分:} \\ e^{\frac{b}{a}t}x=\int{\frac{c}{a}e^{\frac{b}{a}t}}dt=\frac{c}{b}e^{\frac{b}{a}t}+C \\ x\left( t \right) =\frac{c}{b}+Ce^{-\frac{b}{a}t} \\ \text{取任意时刻的}x\left( t \right) \text{可计算得到}C\text{。} \\ x\left( 0_- \right) =\frac{c}{b}+C\Rightarrow \,\, C=x\left( 0_- \right) -\frac{c}{b} \\ x\left( t \right) =\frac{c}{b}+\left( x\left( 0_- \right) -\frac{c}{b} \right) e^{-\frac{b}{a}t} \\ \\ adtdx+bx=cdtdx+abx=ac(1)根据齐次微分方程的结论:构造分布积分的配合项eA(t)其中A(t)=abt(1)式左右两边乘以:eA(t)dtdxeabt+abxeabt=aceabtdtd[eabtx]=aceabt两边同时积分:eabtx=aceabtdt=bceabt+Cx(t)=bc+Ceabt取任意时刻的x(t)可计算得到Cx(0)=bc+CC=x(0)bcx(t)=bc+(x(0)bc)eabt
特点: 非齐次微分方程需要构造分部积分的乘积项。

拉普拉斯变换

对于非齐次微分方程:
a d x d t + b x = c 根据拉普拉斯变化的微分性质: L [ d x d t ] = s F ( s ) − x ( 0 − ) a s F ( s ) − a x ( 0 − ) + b F ( s ) = c ( a s + b ) F ( s ) = c + a x ( 0 − ) F ( s ) = c + a x ( 0 − ) a s + b a\frac{dx}{dt}+bx=c \\ \text{根据拉普拉斯变化的微分性质:} \\ \mathscr{L} \left[ \frac{dx}{dt} \right] =sF\left( s \right) -x\left( 0_- \right) \\ asF\left( s \right) -ax\left( 0_- \right) +bF\left( s \right) =c \\ \left( as+b \right) F\left( s \right) =c+ax\left( 0_- \right) \\ F\left( s \right) =\frac{c+ax\left( 0_- \right)}{as+b} adtdx+bx=c根据拉普拉斯变化的微分性质:L[dtdx]=sF(s)x(0)asF(s)ax(0)+bF(s)=c(as+b)F(s)=c+ax(0)F(s)=as+bc+ax(0)

零初始逆变换

零初始情况下:
F ( s ) = c / a s ( s + b / a ) F ( s ) = A s + B s + b / a A = s F ( s ) ∥ s = 0 = c b B = ( s + b / a ) F ( s ) ∥ s = − b a = − c b F ( s ) = c / b s + − c / b s + b / a x ( t ) = L − 1 c b − c b e − b a t F\left( s \right) =\frac{c/a}{s\left( s+b/a \right)} \\ F\left( s \right) =\frac{A}{s}+\frac{B}{s+b/a} \\ A=sF\left( s \right) _{\left\| s=0 \right.}=\frac{c}{b} \\ B=\left( s+b/a \right) F\left( s \right) _{\left\| s=-\frac{b}{a} \right.}=-\frac{c}{b} \\ F\left( s \right) =\frac{c/b}{s}+\frac{-c/b}{s+b/a} \\ x\left( t \right) \overset{\mathcal{L} ^{-1}}{=}\frac{c}{b}-\frac{c}{b}e^{-\frac{b}{a}t} F(s)=s(s+b/a)c/aF(s)=sA+s+b/aBA=sF(s)s=0=bcB=(s+b/a)F(s)s=ab=bcF(s)=sc/b+s+b/ac/bx(t)=L1bcbceabt

非零初始逆变换

非零初始情况下:
F ( s ) = c / a s ( s + b / a ) + x ( 0 ) ( s + b / a ) F ( s ) = A s + B s + b / a + x ( 0 ) ( s + b / a ) A = s F ( s ) ∣ s = 0 = c b B = ( s + b a ) F ( s ) ∣ s = − b a = − c b x ( t ) = c b − c b e − b a t + x ( 0 ) e − b a t x ( t ) = c b + ( x ( 0 ) − c b ) e − b a t F\left( s \right) =\frac{c/a}{s\left( s+b/a \right)}+\frac{x\left( 0 \right)}{\left( s+b/a \right)} \\ F\left( s \right) =\frac{A}{s}+\frac{B}{s+b/a}+\frac{x\left( 0 \right)}{\left( s+b/a \right)} \\ A=sF\left( s \right) _{|s=0}=\frac{c}{b} \\ B=\left( s+\frac{b}{a} \right) F\left( s \right) _{|s=-\frac{b}{a}}=-\frac{c}{b} \\ x\left( t \right) =\frac{c}{b}-\frac{c}{b}e^{-\frac{b}{a}t}+x\left( 0 \right) e^{-\frac{b}{a}t} \\ x\left( t \right) =\frac{c}{b}+\left( x\left( 0 \right) -\frac{c}{b} \right) e^{-\frac{b}{a}t} \\ F(s)=s(s+b/a)c/a+(s+b/a)x(0)F(s)=sA+s+b/aB+(s+b/a)x(0)A=sF(s)s=0=bcB=(s+ab)F(s)s=ab=bcx(t)=bcbceabt+x(0)eabtx(t)=bc+(x(0)bc)eabt
注意点:c作为激励,进行拉普拉斯变换要当作阶跃信号进行。

零极点图

取a=1;b=5,c=10.绘制零极点图:

%传递函数
s = tf('s')%% 定义
G = 10/s*(s+5);
pzplot(G)
sgrid;

在这里插入图片描述
0初值时的阶跃响应:
在这里插入图片描述
初值为5时的阶跃响应:
注意传递函数是在零初始情况下定义的,当非零初始情况下,参照下面的图片。
在这里插入图片描述
注意:非零初始相当于冲击激励。系统响应相当于两个激励共同作用,一个是c为阶跃输入,一个是冲击激励。
在这里插入图片描述

bode图

在这里插入图片描述

matlab时域符号函数推导和拉普拉斯变换求解

%matlab求解一阶线性微分方程:
syms t  a b c x(t) T
equ1= a*diff(x,t)+b*x(t)==c
cond1=(x(0)==T)
dsolve(equ1,cond1)

计算结果如下,与时域微分方程的推导结果一致。
在这里插入图片描述

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值