手眼标定原理

本文详细介绍了eye-in-hand安装方式下,如何通过机械臂末端与相机之间的变换矩阵A、B来建立并求解AX=XB方程,利用Tsai-Lenz手眼标定算法,包括旋转轴、修正的罗德里格斯参数和平移矩阵的计算方法。
摘要由CSDN通过智能技术生成

一、AX=BX方程的建立

本文采用 eye-in-hand 的安装方式,主要求解机械臂末端与相机之间的变换关系。

 eye-in-hand 涉及到四个坐标系,分别是:基坐标系{base},末端坐标系{end},相机坐标系{camera},标定板坐标系{board}。设 baseHend = A , boardHcamera = B,endHcamera = X

其中 A代表机器人基坐标系与末端坐标系之间的转换矩阵, B 代表标定板坐标系与相机坐标系之间的转换矩阵, X 代表末端坐标系与相机坐标系之间的转换矩阵。

控制机械臂从初始位置移动到位置 1,其推导公式如下:

 由以上三个公式可以得出 Pbase,其计算公式如下:

同理机械臂移动到位置 2,其计算公式如下:

因为基坐标与物体的位置是固定的,所以baseHboard 不变, 可以得出:
 设 baseHend(1) = A1, baseHend(2) = A2 , endHcamera = X , boardHcamera(1) = B1,boardHcamer(2)a = B2,可以得出:

 使 A * A = A  , B * B = B,因此 AX = XB,其中A已知, B通过相机标定得到, X 为待求。

 二、AX=BX方程的建立

Tsai-Lenz 手眼标定算法

由于 A, B , X 均为变换矩阵,则 AX = XB 可以拆解为以下等式:

        在Tsai-Lenz论文中使用旋转轴+旋转角的方式来表示旋转。作者使用了修正的罗德里格斯参数表示旋转变换。

        R表示一个旋转矩阵,R的特征向量和特征值一定是它的旋转轴和1。我们可以定义R的旋转轴为Pr(旋转向量),则有:R *P r = 1 * Pr。

        使用修正的罗德里格斯变换重新定义Pr:

求Pcg和和Pcij , Pgij 之间的关系。

这张图描述了各个向量之间的关系。从图中,我们根据向量之间的关系,可以得到:

可得公式:

计算旋转矩阵

计算平移矩阵

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值