使用 PMU(相量测量单元)进行电力系统状态估计【IEEE-14、IEEE30节点】(Matlab代码实现)

👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、引言

二、PMU简介

三、电力系统状态估计方法

四、IEEE-14和IEEE30节点系统仿真研究

五、结论与展望

📚2 运行结果

2.1 IEEE14节点

2.2 IEEE30节点 

🎉3 参考文献

🌈4 Matlab代码及文章下载


💥1 概述

电力系统状态估计是根据在少数母线上进行的测量来估计电力系统中所有母线的状态(电压幅值和角度)的过程。早期的测量设备只能提供测量数量的大小。但现在,一种叫做相量测量单元(PMU)的高效测量设备正在使用,它可以测量母线的电压相量(大小和角度)以及直接连接线路的电流相量。由于PMU非常昂贵,因此不能仅使用PMU测量来估计电力系统的状态。因此,相量测量被用作传统测量的附加测量,以估计电力系统的状态。

在本本文中,解释了使用PMU测量来估计电力系统的状态,编写了Matlab程序,并在IEEE-14节点和IEEE30节点上进行了仿真,以验证该方法。该方法使用单独的线性状态估计器模型,该模型利用来自WLS的状态估计以及通过后处理的PMU电压和电流测量。首先,该模型使用传统测量的WLS状态估计方法估计极坐标中的状态。然后,该状态和PMU测量值(均以直角坐标表示)用于估计系统的最终状态。

PMU(相量测量单元)在电力系统状态估计方面的研究是非常重要的。PMU 是一种高精度、高速度的传感器,能够实时测量电力系统中的电压、电流和相角等参数。通过在电网中部署 PMU 并利用其提供的实时数据,可以实现电力系统状态的准确估计和监测。

电力系统状态估计是指利用测量数据对电力系统的各个节点的电压相位和幅值进行估计,以及对系统中的分支参数进行估计的过程。传统的状态估计方法通常使用基于 SCADA 数据的慢速采样数据进行估计,而 PMU 可以提供高频率的数据,从而使状态估计更加准确和实时。

PMU 在电力系统状态估计研究中的应用包括但不限于以下几个方面:

1. **实时状态估计**:利用 PMU 提供的高速数据,可以实现电力系统状态的实时估计,使电网运行人员能够更及时地了解系统状态,并做出相应的调度决策。

2. **故障定位与诊断**:PMU 可以提供对电力系统中异常情况的实时监测,例如故障发生时的电压和电流突变。基于 PMU 数据的故障诊断技术可以帮助运维人员快速准确地定位故障点,提高系统的可靠性和安全性。

3. **动态系统模型验证**:PMU 数据可以用于验证电力系统的动态模型,通过比较实测数据和模型仿真结果,可以改进系统模型的准确性,提高模型在实际运行中的适用性。

4. **潮流计算和电网安全分析**:基于 PMU 数据的状态估计结果可以用于潮流计算和电网安全分析,帮助预测系统在各种工作条件下的稳定性和可靠性,为电网规划和运行提供重要参考。

PMU 在电力系统状态估计研究中具有重要的应用前景,可以为电力系统的运行和管理提供更可靠、实时的数据支持。

一、引言

电力系统状态估计是根据在少数母线上进行的测量来估计电力系统中所有母线的状态(电压幅值和角度)的过程。随着电力系统的发展,对状态估计的精度和实时性要求越来越高。PMU作为一种高精度、高速度的传感器,能够实时测量电力系统中的电压、电流和相角等参数,为电力系统状态估计提供了新的手段。

二、PMU简介

PMU是一种基于GPS同步时钟的相量测量装置,它能够测量母线的电压相量(大小和角度)以及直接连接线路的电流相量。由于PMU提供的数据精度高、采样周期短,因此可以为线性动态状态估计的实现提供可能。然而,由于PMU装置成本较高,目前的安装数量有限,因此在实际应用中通常会结合传统测量数据进行混合状态估计。

三、电力系统状态估计方法

  1. 传统状态估计方法

    • 主要基于SCADA(数据采集和监控系统)提供的量测量,包括功率、电压幅值和电流幅值。
    • 存在数据采集、模数转换和传输等过程中的误差和干扰问题。
  2. 基于PMU的状态估计方法

    • 利用PMU提供的高精度、高频率的相量测量数据进行状态估计。
    • 可以实现实时状态估计、故障定位与诊断、动态系统模型验证以及潮流计算和电网安全分析等功能。

四、IEEE-14和IEEE30节点系统仿真研究

为了验证基于PMU的电力系统状态估计方法的有效性,本文在IEEE-14和IEEE30节点系统上进行了仿真研究。

  1. IEEE-14节点系统

    • 系统结构:包含14个母线、20条支路和5台发电机。
    • 仿真过程:使用Matlab编写程序,结合传统测量数据和PMU测量数据进行状态估计。
    • 结果分析:对比了有无PMU情况下的电压幅值和角度估计误差,验证了PMU对提高状态估计精度的作用。
  2. IEEE30节点系统

    • 系统结构:包含30个母线、41条支路和6台发电机。
    • 仿真过程:同样使用Matlab编写程序进行仿真,并对比了有无PMU情况下的估计结果。
    • 结果分析:进一步验证了PMU在电力系统状态估计中的有效性和准确性。

五、结论与展望

本文研究了基于PMU的电力系统状态估计方法,并在IEEE-14和IEEE30节点系统上进行了仿真验证。结果表明,PMU能够显著提高电力系统状态估计的精度和实时性。未来,随着PMU技术的不断发展和成本的降低,其在电力系统中的应用前景将更加广阔。同时,也需要进一步研究如何更有效地利用PMU数据进行状态估计和故障诊断等问题。

📚2 运行结果

2.1 IEEE14节点

2.2 IEEE30节点 

部分代码:

function errors(E1,E2,E3)

er11 = E1-E2;
er12 = E1-E3;
n = length(er11);
t = 1:n;

subplot(2,2,1);
plot(t,er11(:,2),'--rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',5);
set(gca,'XTick',1:1:n);
title('Voltage Angle Estimation Error without PMU');
xlabel('Bus Number'); ylabel('Voltage Angle Error (degrees)');

subplot(2,2,2);
plot(t,er11(:,1)*100,'--rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',5);
set(gca,'XTick',1:1:n);
title('Voltage Magnitude Estimation Error without PMU');
xlabel('Bus Number'); ylabel('Voltage Magnitude Error (%)');

subplot(2,2,3);
plot(t,er12(:,2),'--rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',5);
set(gca,'XTick',1:1:n);
title('Voltage Angle Estimation Error with PMU');
xlabel('Bus Number'); ylabel('Voltage Angle Error (degrees)');

subplot(2,2,4);
plot(t,er12(:,1)*100,'--rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g','MarkerSize',5);
set(gca,'XTick',1:1:n);
title('Voltage Magnitude Estimation Error with PMU');
xlabel('Bus Number'); ylabel('Voltage Magnitude Error (%)');

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈4 Matlab代码及文章下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值