YOLOv5小目标检测(方法与评价)

针对小目标检测中常见的漏检问题,本文分享了实践经验及改进方法。指出仅依赖注意力机制和增加检测层难以显著提升效果,强调通过优化数据集结构(如平衡各类别样本数、适当增加负样本等)来提高检测精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题:

当我们在对小目标数据集进行检测时,发现无论如何都有一些漏检的,其中我们也添加一些模块,以及其他的一些改进方法,如注意力、激活函数等等,结果始终不会令人满意,map也没有丝毫的提升。

目的:

增加对小目标的检测能力,不能产生漏检!

自述:

许多关于小目标的资料,包括知网上的一些期刊,真的是无力吐槽,可能他们也只是提供方法,而不考虑结果吧,虽然注意力机制个别情况确实有效,但这种几率太低太低(陨石撞地球)。

还有一些增加小目标检测层来提高检测能力的文章,这种提高的可能只有50%(基本没用),map只会直线下降。

提高map只能靠不断尝试,不是在网上随便拷个检测层就能提高的,需要在固定的层数添加,大部分跟着其他博主的博客进行操作,都不会有提升的,不是自己数据集的问题,而是自己的添加层有问题,如果只想靠一个注意力和检测层就提高map的话,那基本就是痴心妄想了,不要被一些博主的几句话封固自己的想法,实践是检验真理的唯一标准。

下面放几张我的小目标检测图片:

 

 

方法:

达到工业级别的检测能力与精度,需要不断地进行迭代更新与完善;而不是说我训练个模型,map达到了99%以上就能满足工业检测需求(例如知网上的很多论文....),map高并不代表检测能力好,反而他的泛化能力差,并且工业检测也不看map值

最简单直接的方法就是从数据集下手,并且先考虑这种方法不用担心之后的检测能力出现大的失误,并且还有可能会被检测环境所影响。可以考虑数据集的类别数量不要过多,否则导致误检率的提高,每种类别的图片数量差距不要太大,否则也会产生过拟合的现象;如果误检情况比较严重,可以添加少量的负样本;在保持每种类别数量较为平均的状态下,可能扩充一下数据集,增强一下学习能力,这都是比较有效的提升方法。

结束:

如果是要写论文,或许可以多尝试一下改动检测层,注意力的话不要浪费太多时间;工业的检测讲究速度与精度,在这方面还是有很多可以尝试的改进点,欢迎一起交流。

### YOLOv5目标检测的实现分析 尽管YOLOv5没有官方发布的学术论文[^2],但它作为YOLO系列的重要延伸版本,在开源社区中得到了广泛的应用和发展。以下是对其技术特点、网络结构以及应用场景的具体分析。 #### 技术特点 YOLOv5继承了YOLO系列的核心理念——单阶段目标检测框架,并在此基础上进行了多项优化。它通过简化配置文件和增强模块化设计,显著提高了模型的灵活性和可扩展性。此外,YOLOv5特别注重在资源受限环境下的表现,适用于低功耗设备和嵌入式系统[^3]。 #### 网络结构 YOLOv5的网络结构延续了YOLOv4的设计思路,但在细节上有一定调整。例如,YOLOv5引入了更高效的特征提取机制,支持动态输入尺寸调整,从而适应不同分辨率的需求[^1]。同时,该版本还增强了数据预处理流程,包括自动增广策略(AutoAugment)、马赛克数据增强(Mosaic Data Augmentation)等功能,进一步提升了模型的泛化能力。 #### 应用场景 由于其出色的性能平衡能力和较低的计算开销,YOLOv5被广泛应用于多种领域,尤其是在自动驾驶、安防监控等领域展现了巨大潜力。例如,在自动驾驶场景下,YOLOv5能够快速识别道路上的目标物体,满足实时性的严格要求;而在安防监控方面,则凭借高精度检测功能实现了对异常行为的有效预警。 ```python import torch from yolov5 import detect # 加载预训练权重 model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # 执行目标检测 results = model('example.jpg') print(results.pandas().xyxy[0]) ``` 上述代码展示了如何利用PyTorch加载YOLOv5模型并执行简单的图像目标检测任务。 --- ###
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr Dinosaur

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值