分析力学:等时变分

小记一下分析力学里等时变分的概念

1 理解笔记

主要介绍函数的变分函数导数的变分泛函的变分的定义,及相关的两条性质。

  1. 函数导数的变分等于函数变分的导数,即变分与微分的运算顺序可以互换。
  2. 函数定积分的变分等于函数变分的定积分,即变分与定积分运算的顺序可以互换。

 1.1 函数及其导数的变分

图 A.1 函数的微分与变分

设可微函数x(t)如上图A.1中的实线所示,当自变量t有微小增量dt时,函数x的相应的增量可用导数\dot{x}(t)表示为 

微分:\dot{x}dt定义为x(t)微分,记作dx,即dx=\dot{x}dt

\tilde{x}(t)为与 x(t)接近的另一个函数如上图A.1中的虚线所示,满足

其中,\varepsilon为任意无穷小实数,\eta (t)为任意可微函数。

变分 :将函数\tilde{x}(t)x(t)在同一时刻的差值定义为x(t)在确定时刻的变分(也称等时变分)
记作\delta x,即\delta x=\tilde{x}(t)-x(t)=\varepsilon \eta (t)

当函数x(t)变成\tilde{x}(t)时,函数的导数\dot{x}(t)变成\dot{\tilde{x}}(t)

\dot{x}(t)的变分,定义为\delta \dot{x}=\dot{\tilde{x}}(t)-\dot{x}(t)

由于:,对比上式发现

函数导数的变分等于函数变分的导数,即变分与微分的运算顺序可以互换。

 1.2 (定积分)泛函的变分

泛函:凡变量的值是由一个或多个函数的选取而确定的,此变量称为这些函数的泛函

定积分就是最常见的泛函,当x(t)变成x(t)+\varepsilon \eta (t)时,泛函记作\tilde{J}即:

泛函J的变分:当定积分的上下限t_{1},t_{2}不变时,由于函数x(t)的微小变化而导致的泛函J的微小改变定义为泛函J的变分,记作\delta J,即

被积函数为x(t)的微小变化所引起的函数F的微小改变,即F的变分\delta F

导出,得

函数定积分的变分等于函数变分的定积分,即变分与定积分运算的顺序可以互换。

2 参考原文


 注:原文内容在《高等动力学》(第二版)刘延柱 编著 附录A.1 等时变分 P290

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值