【图像分割】基于 K-means 聚类算法实现图像区域分割matlab代码

本文介绍了使用K-means聚类算法在CIE Lab颜色空间中进行图像区域分割的方法。通过对a和b通道进行聚类分析,实现了彩色图像的有效分割,尤其适用于纺织品图像的处理。实验结果显示该方法能成功地提取不同颜色区域。

1 简介

对图像进行颜色区域分割.将图像转换到CIE Lab颜色空间,用K均值聚类分析算法对描述颜色的a和b通道进行聚类分析;通过提取各个颜色区域独立成为单色的新图像,对图像进行分割处理.实验结果表明,在CIE Lab空间使用K—means聚类算法可以有效地分割彩色纺织品图像的颜色区域.

2 部分代码

clc
close all
I=imread('football.jpg');
subplot(2,3,1)
imshow(I)
title('原始图像')
for i=2:6
  F=imkmeans(I,i);
  subplot(2,3,i);
  imshow(F,[]);
  title(['聚类个数=',num2str(i)])
end
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值