【数据预测】基于 BP+ELM+LSTM+BiLSTM+SAELSTM多种算法实现数据预测含Matlab源码

本文介绍了使用BP、ELM、LSTM、BiLSTM和SAELSTM神经网络算法在Matlab中进行数据预测的方法。针对不同算法,讨论了网络结构的选择,如隐藏层节点数、输入层设计、性能函数等,并给出了部分代码和仿真结果。博主擅长Matlab仿真,涉及智能优化、信号处理等多个领域。

1 简介

基于 BP+ELM+LSTM+BiLSTM+SAELSTM多种算法实现数据预测.

1.1 BP神经网络

BP神经网络模型是目前应用最为广泛神经网络之一。它的本质是通过对历史数据的学习找出数据变化趋势之间的非线性关系,并通过输出量与预期值之间的误差不断调整网络中各个单元的权重,使整个网络的误差最小。因此,为达到较好的预测精度,需要对网络预测模型自身的结构进行确定。

1)网络层数的设计。本文需要构建的预测模型,主要是用于研究在短时间交通流走势。在这种情况下,不需选择增加网络层数的办法而是选择增加隐含层神经元节点的数目来提高输出结果的精度。因此,本文选用单一隐层的 BP神经网络模型。

2)输入层神经节点的设计。在单因素预测中仅使用交通流作为原始数据.

3)传递函数和学习函数的设计。本文所设计的模型均采用了相同的隐含层传递函数tansig、输出层传递函数logsig和学习函数learngdm。

4)性能函数的确定。网络误差能直观的反映预测效果的好坏程度,是预测精度的具体反映。本文在构建 BP神经网络模型时选择均方误差来确定网络的误差情况。

5)隐含层神经节点的设计。在模型中其它参数值保持不变的情况下,本文通过调整隐含层神经节点的数目进行重复实验,通过对比输出误差,确定最佳隐含层神经元节点的数目。对于单因素 BP神经网络,当隐含层神经元节点的数目为24时,BP神经网络的均方误差最小,即对函数的逼近效果最好,此时的均方误差为1.1609;对于多因素 BP神经网络,隐含层神经元节点数目为5时,BP神经网络的均方误差达到最小,最小值为0.0126。根据以上分析,单因素 BP神经网络预测模型的结构为:单一隐含层和单一输出层;输入层神经节点数目为5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值