✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容介绍
随着科技的发展和工业生产的不断进步,控制系统在现代工程中扮演着至关重要的角色。PID控制器作为一种经典的控制算法,被广泛应用于工业控制系统中。然而,传统的PID控制器在面对复杂、非线性的系统时往往表现不佳,因此需要引入新的控制方法来提高系统的鲁棒性和性能。基于RBF径向基函数网络的PID自适应控制便是一种有效的控制方法,它结合了PID控制器的简单性和RBF网络的非线性逼近能力,能够更好地适应各种复杂系统的控制需求。
RBF径向基函数网络是一种基于统计学习理论的人工神经网络模型,具有良好的非线性逼近能力和全局逼近性。它通过在输入空间中构建一组径向基函数来对系统的非线性特性进行建模,从而实现对复杂系统的有效控制。与传统的多层感知机神经网络相比,RBF网络具有较快的训练速度和较好的泛化能力,能够更快地适应系统的变化,并且不易陷入局部极小值。
在基于RBF径向基函数网络的PID自适应控制中,首先需要建立系统的数学模型,并确定系统的控制目标。然后,利用RBF网络对系统进行非线性逼近,将其作为PID控制器的前馈路径,实现对系统非线性特性的补偿。同时,利用PID控制器的反馈路径对系统的稳定性和鲁棒性进行调节,从而实现对系统的精确控制。在控制过程中,通过不断调整RBF网络的参数和PID控制器的参数,使控制系统能够不断适应系统的变化,实现对系统的自适应控制。
基于RBF径向基函数网络的PID自适应控制在实际工程中具有广泛的应用前景。它能够有效地应对各种复杂系统的控制需求,包括机械系统、电力系统、化工系统等。通过合理地设计RBF网络的结构和参数,以及PID控制器的参数,可以实现对系统的快速响应和稳定控制。因此,基于RBF径向基函数网络的PID自适应控制将成为未来工业控制领域的重要发展方向,为工程技术的进步和工业生产的提高提供有力支持。
该matlab程序为系统学习基于RBF神经网络的PID自适应控制所写,优化算法为梯度下降法,代码可以实现输入输出数据的产生,RBF神经网络权值、结点、基宽的自适应调节,PID参数的自整定。
📣 部分代码
%%RBF神经网络自适应控制
clear all;
close all;
ts=1;
sys=tf(2.21,[210,1]);
dsys=c2d(sys,ts,'z');
[num,den]=tfdata(dsys,'v');
r1=0.08;r2=1;%前一时刻状态与控制输入对应的权值
xite=0.5; %学习速率
alfa=0.05; %动量因子
beta=0.01; %
x=[0,0,0]';%网络输入向量
ci=zeros(3,6);%结点的中心矢量
bi=10*ones(6,1);%结点的宽度参数
w=0.10*ones(6,1);%权值
h=[0,0,0,0,0,0]';%高斯函数
⛳️ 运行结果
🔗 参考文献
[1] 陈雯柏,吴细宝,裴艳荣,等.基于RBF神经网络的自适应PID控制策略研究[C]//International Conference on Computational Intelligence & Industrial Application.2010.
[2] 陈雯柏,吴细宝,裴艳荣,等.基于RBF神经网络的自适应PID控制策略研究[C]//0[2023-12-11].