✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容介绍
摘要
心电信号(ECG)是反映心脏电活动的生物电信号,在医学诊断中具有重要意义。然而,ECG信号在采集过程中容易受到各种噪声的干扰,如工频干扰、肌肉噪声等,这些噪声会影响ECG信号的诊断价值。因此,ECG信号去噪是ECG信号处理中的一个重要环节。
本文提出了一种基于小波变换的ECG信号去噪方法,该方法结合了heursure规则阈值和Minimax规则阈值,能够有效地去除ECG信号中的噪声。首先,利用小波变换将ECG信号分解成多个子带信号;然后,对每个子带信号应用heursure规则阈值和Minimax规则阈值进行去噪;最后,将去噪后的子带信号重构得到去噪后的ECG信号。
1. 绪论
心电信号(ECG)是反映心脏电活动的生物电信号,在医学诊断中具有重要意义。然而,ECG信号在采集过程中容易受到各种噪声的干扰,如工频干扰、肌肉噪声等,这些噪声会影响ECG信号的诊断价值。因此,ECG信号去噪是ECG信号处理中的一个重要环节。
近年来,随着小波变换理论的发展,小波变换已被广泛应用于ECG信号去噪领域。小波变换具有良好的时频局部化特性,能够有效地捕捉ECG信号中的有用信息,同时滤除噪声。
本文提出了一种基于小波变换的ECG信号去噪方法,该方法结合了heursure规则阈值和Minimax规则阈值,能够有效地去除ECG信号中的噪声。首先,利用小波变换将ECG信号分解成多个子带信号;然后,对每个子带信号应用heursure规则阈值和Minimax规则阈值进行去噪;最后,将去噪后的子带信号重构得到去噪后的ECG信号。
2. 小波变换
小波变换是一种时频分析方法,它将信号分解成一系列小波函数的线性组合。小波函数具有良好的时频局部化特性,能够有效地捕捉信号中的有用信息,同时滤除噪声。
小波变换的公式如下:
�(�,�)=∫−∞∞�(�)��,�∗(�)��
小波变换具有以下优点:
-
时频局部化特性好,能够有效地捕捉信号中的有用信息,同时滤除噪声。
-
具有良好的数学基础,便于理论分析和应用。
-
具有良好的计算效率,便于实时处理。
3. heursure规则阈值
heursure规则阈值是一种自适应阈值选择方法,它根据信号的局部方差来确定阈值。heursure规则阈值的公式如下:
�=�2log�
heursure规则阈值具有以下优点:
-
能够根据信号的局部方差自适应地选择阈值,提高了去噪效果。
-
计算简单,便于实现。
4. Minimax规则阈值
Minimax规则阈值是一种基于最小化最大误差的阈值选择方法。Minimax规则阈值的公式如下:
�=argmin�∈�max�∈�∣�−�∣�(�
Minimax规则阈值具有以下优点:
-
能够有效地去除信号中的噪声,提高了去噪效果。
-
具有良好的鲁棒性,不受噪声分布的影响。
📣 部分代码
x=data;
wname='Haar';
level=5;
[c,l]=wavedec(x,level,wname);
a5=wrcoef('a',c,l,'Haar',5);
a4=wrcoef('a',c,l,'Haar',4);
a3=wrcoef('a',c,l,'Haar',3);
a2=wrcoef('a',c,l,'Haar',2);
a1=wrcoef('a',c,l,'Haar',1);
subplot(322);plot(a5);title('a5');axis([0 1201 -2 2]);
subplot(323);plot(a4);title('a4');axis([0 1201 -2 2]);
subplot(324);plot(a3);title('a3');axis([0 1201 -2 2]);
subplot(325);plot(a2);title('a2');axis([0 1201 -2 2]);
subplot(326);plot(a1);title('a1');axis([0 1201 -2 2]);
%%%%%%%%%%%%基于db6小波%%%%%
ecg=fopen('100.dat','r');
⛳️ 运行结果
5. 实验结果
为了验证本文提出的ECG信号去噪方法的有效性,我们进行了仿真实验。实验数据来自MIT-BIH心电信号数据库,其中包含100个不同患者的ECG信号。
我们首先将ECG信号分解成多个子带信号,然后对每个子带信号应用heursure规则阈值和Minimax规则阈值进行去噪。最后,将去噪后的子带信号重构得到去噪后的ECG信号。
实验结果表明,本文提出的ECG信号去噪方法能够有效地去除ECG信号中的噪声,提高了ECG信号的质量。图1给出了原始ECG信号和去噪后的ECG信号的对比图。
6. 结论
本文提出了一种基于小波变换的ECG信号去噪方法,该方法结合了heursure规则阈值和Minimax规则阈值,能够有效地去除ECG信号中的噪声。实验结果表明,本文提出的ECG信号去噪方法能够有效地提高ECG信号的质量,具有较好的应用前景。
🔗 参考文献
[1] 叶琳琳,杨丹,王旭.基于集合经验分解与改进阈值函数的小波变换心电信号去噪方法研究[J].生物医学工程学杂志, 2014, 31(3):5.DOI:CNKI:SUN:SWGC.0.2014-03-019.
[2] 白丽荣.基于小波变换的心电信号处理技术的研究[D].山东科技大学[2023-12-31].DOI:CNKI:CDMD:2.2006.185046.
[3] 焦运良,邢计元,靳尧凯.基于小波变换的心电信号阈值去噪算法研究[J].信息技术与网络安全, 2019.DOI:CNKI:SUN:WXJY.0.2019-05-013.
[4] Hui-Jing W , Bao-Ming P U , Hong-Guo S ,et al.Denoising Algorithm of ECG Signals Based on Wavelet Threshold基于小波阈值的心电信号去噪算法[J].Computer Systems & Applications, 2012(12):145-148.