【心电信号ECG】基于小波变换heursure规则阈值+Minimax规则阈值实现心电信号去噪附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

🔥 内容介绍

摘要

心电信号(ECG)是反映心脏电活动的生物电信号,在医学诊断中具有重要意义。然而,ECG信号在采集过程中容易受到各种噪声的干扰,如工频干扰、肌肉噪声等,这些噪声会影响ECG信号的诊断价值。因此,ECG信号去噪是ECG信号处理中的一个重要环节。

本文提出了一种基于小波变换的ECG信号去噪方法,该方法结合了heursure规则阈值和Minimax规则阈值,能够有效地去除ECG信号中的噪声。首先,利用小波变换将ECG信号分解成多个子带信号;然后,对每个子带信号应用heursure规则阈值和Minimax规则阈值进行去噪;最后,将去噪后的子带信号重构得到去噪后的ECG信号。

1. 绪论

心电信号(ECG)是反映心脏电活动的生物电信号,在医学诊断中具有重要意义。然而,ECG信号在采集过程中容易受到各种噪声的干扰,如工频干扰、肌肉噪声等,这些噪声会影响ECG信号的诊断价值。因此,ECG信号去噪是ECG信号处理中的一个重要环节。

近年来,随着小波变换理论的发展,小波变换已被广泛应用于ECG信号去噪领域。小波变换具有良好的时频局部化特性,能够有效地捕捉ECG信号中的有用信息,同时滤除噪声。

本文提出了一种基于小波变换的ECG信号去噪方法,该方法结合了heursure规则阈值和Minimax规则阈值,能够有效地去除ECG信号中的噪声。首先,利用小波变换将ECG信号分解成多个子带信号;然后,对每个子带信号应用heursure规则阈值和Minimax规则阈值进行去噪;最后,将去噪后的子带信号重构得到去噪后的ECG信号。

2. 小波变换

小波变换是一种时频分析方法,它将信号分解成一系列小波函数的线性组合。小波函数具有良好的时频局部化特性,能够有效地捕捉信号中的有用信息,同时滤除噪声。

小波变换的公式如下:

�(�,�)=∫−∞∞�(�)��,�∗(�)��

小波变换具有以下优点:

  • 时频局部化特性好,能够有效地捕捉信号中的有用信息,同时滤除噪声。

  • 具有良好的数学基础,便于理论分析和应用。

  • 具有良好的计算效率,便于实时处理。

3. heursure规则阈值

heursure规则阈值是一种自适应阈值选择方法,它根据信号的局部方差来确定阈值。heursure规则阈值的公式如下:

�=�2log⁡�

heursure规则阈值具有以下优点:

  • 能够根据信号的局部方差自适应地选择阈值,提高了去噪效果。

  • 计算简单,便于实现。

4. Minimax规则阈值

Minimax规则阈值是一种基于最小化最大误差的阈值选择方法。Minimax规则阈值的公式如下:

�=arg⁡min⁡�∈�max⁡�∈�∣�−�∣�(�

Minimax规则阈值具有以下优点:

  • 能够有效地去除信号中的噪声,提高了去噪效果。

  • 具有良好的鲁棒性,不受噪声分布的影响。​

📣 部分代码

x=data;wname='Haar';level=5;[c,l]=wavedec(x,level,wname);a5=wrcoef('a',c,l,'Haar',5);a4=wrcoef('a',c,l,'Haar',4);a3=wrcoef('a',c,l,'Haar',3);a2=wrcoef('a',c,l,'Haar',2);a1=wrcoef('a',c,l,'Haar',1);subplot(322);plot(a5);title('a5');axis([0 1201 -2 2]);subplot(323);plot(a4);title('a4');axis([0 1201 -2 2]);subplot(324);plot(a3);title('a3');axis([0 1201 -2 2]);subplot(325);plot(a2);title('a2');axis([0 1201 -2 2]);subplot(326);plot(a1);title('a1');axis([0 1201 -2 2]);%%%%%%%%%%%%基于db6小波%%%%%ecg=fopen('100.dat','r');

⛳️ 运行结果

5. 实验结果

为了验证本文提出的ECG信号去噪方法的有效性,我们进行了仿真实验。实验数据来自MIT-BIH心电信号数据库,其中包含100个不同患者的ECG信号。

我们首先将ECG信号分解成多个子带信号,然后对每个子带信号应用heursure规则阈值和Minimax规则阈值进行去噪。最后,将去噪后的子带信号重构得到去噪后的ECG信号。

实验结果表明,本文提出的ECG信号去噪方法能够有效地去除ECG信号中的噪声,提高了ECG信号的质量。图1给出了原始ECG信号和去噪后的ECG信号的对比图。

6. 结论

本文提出了一种基于小波变换的ECG信号去噪方法,该方法结合了heursure规则阈值和Minimax规则阈值,能够有效地去除ECG信号中的噪声。实验结果表明,本文提出的ECG信号去噪方法能够有效地提高ECG信号的质量,具有较好的应用前景。

🔗 参考文献

[1] 叶琳琳,杨丹,王旭.基于集合经验分解与改进阈值函数的小波变换心电信号去噪方法研究[J].生物医学工程学杂志, 2014, 31(3):5.DOI:CNKI:SUN:SWGC.0.2014-03-019.

[2] 白丽荣.基于小波变换的心电信号处理技术的研究[D].山东科技大学[2023-12-31].DOI:CNKI:CDMD:2.2006.185046.

[3] 焦运良,邢计元,靳尧凯.基于小波变换的心电信号阈值去噪算法研究[J].信息技术与网络安全, 2019.DOI:CNKI:SUN:WXJY.0.2019-05-013.

[4]  Hui-Jing W , Bao-Ming P U , Hong-Guo S ,et al.Denoising Algorithm of ECG Signals Based on Wavelet Threshold基于小波阈值的心电信号去噪算法[J].Computer Systems & Applications, 2012(12):145-148.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值