✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容介绍
无线传感器网络(WSN)定位技术旨在确定网络中节点的位置信息。RSSI(接收信号强度指示)无线定位是一种常用的 WSN 定位技术,它基于测量无线信号强度来估计节点之间的距离,从而推断节点的位置。
RSSI 原理
RSSI 是指无线电接收机接收到的信号强度。在 WSN 中,节点通过无线电收发器发送和接收信号。当信号从发送节点传播到接收节点时,其强度会随着距离的增加而衰减。这种衰减可以通过以下公式近似表示:
P_r = P_t - n * log10(d) + X
其中:
-
P_r 是接收信号强度(dBm)
-
P_t 是发送信号强度(dBm)
-
n 是路径损耗指数
-
d 是发送节点和接收节点之间的距离(m)
-
X 是随机噪声(dBm)
RSSI 定位方法
基于 RSSI 的无线定位方法主要有以下几种:
1. 三角定位法
三角定位法使用三个或更多已知位置的参考节点来定位目标节点。通过测量目标节点与参考节点之间的 RSSI,可以计算出目标节点与参考节点之间的距离。然后,使用三角几何原理,可以推断出目标节点的位置。
2. 指纹定位法
指纹定位法将 WSN 区域划分为多个网格,并为每个网格收集 RSSI 指纹。当目标节点进入 WSN 区域时,它测量与周围参考节点的 RSSI,并将其与指纹数据库进行比较。通过匹配最相似的指纹,可以推断出目标节点所在的网格。
3. 质心定位法
质心定位法使用多个参考节点来定位目标节点。它计算目标节点与参考节点之间的 RSSI 加权平均值,并将其视为目标节点的位置。
影响因素
影响 RSSI 无线定位精度的因素包括:
-
**路径损耗指数:**路径损耗指数因环境而异,影响信号强度衰减的速率。
-
**多径效应:**无线信号在传播过程中会发生反射和折射,导致接收信号强度出现波动。
-
**阴影效应:**障碍物会阻挡无线信号,导致接收信号强度减弱。
-
**噪声:**环境噪声会干扰无线信号,影响 RSSI 测量精度。
应用
RSSI 无线定位技术广泛应用于各种领域,包括:
-
**资产跟踪:**定位和跟踪贵重资产,如医疗设备和工业机械。
-
**人员定位:**定位和跟踪人员,如在医院或仓库中。
-
**环境监测:**监测环境参数,如温度、湿度和光照强度。
-
**工业自动化:**定位和控制工业设备,如机器人和无人机。
结论
RSSI 无线定位是一种经济高效且易于部署的 WSN 定位技术。它基于测量无线信号强度来估计节点之间的距离,从而推断节点的位置。虽然 RSSI 定位精度受各种因素影响,但它仍能满足许多应用场景的需求。
📣 部分代码
%Testing the case with direct path
%close all;
clear;
%Number of horizontal elements in a ULA
M = 40;
elementspacing = 1/2; %In wavelengths
%Set the SNR
SNR_dB = 0;
SNR = db2pow(SNR_dB);
%Select angle to the base station (known value)
varphi_BS = -pi/6;
%Select angle to the user (to be estimated)
varphi_UE = pi/3;
%Select the amplitude and phase of g and d
var_amp_g=1;
var_amp_d=0.1;
var_phas_g=pi/3;
var_phas_d=pi/3;
%Define the array response vector
arrayresponse = @(phi,M) exp(-1i*2*pi*elementspacing*(0:M-1)'*sin(phi));
%Generate channels
h = arrayresponse(varphi_BS,M);
Dh = diag(h); Dh_angles = diag(h./abs(h));
g = sqrt(var_amp_g) * exp (1i*var_phas_g) * arrayresponse(varphi_UE,M);
d = sqrt(var_amp_d) * exp (1i*var_phas_d);
%Create a uniform grid of beams (like a DFT matrix) to be used at RIS
beamAngles = asin((-M/2:1:M/2)*2/M);
%Select which two RIS configurations from the grid of beams to start with
utilize = false(1,M);
utilize(round(M/3)) = true;
utilize(round(2*M/3)) = true;
%Define the initial transmission setup
RIS_directions = beamAngles(utilize);
RISconfigs = Dh_angles*arrayresponse(RIS_directions,M);
B = RISconfigs';
%% Define a fine grid of angle directions to analyze when searching for angle of arrival
varphi_range = linspace(-pi/2,pi/2,1000);
%Compute the exact capacity for the system
capacity = log2(1+SNR*(sum(abs(Dh*g)) + abs(d))^2);
%Save the rates achieved at different iterations of the algorithm
rate = zeros(M-1,1);
%Generate the noise
noise = (randn(M,1)+1i*randn(M,1))/sqrt(2);
%Go through iterations by adding extra RIS configurations in the estimation
for itr = 1:M-1
%Generate the received signal
y = sqrt(SNR)*(B*Dh*g + d*ones(itr+1,1)) + noise(1:itr+1,1);
%Compute the ML utility function for all potential angles
utility_num = zeros(length(varphi_range),1);
utility_den = zeros(length(varphi_range),1);
for i = 1:length(varphi_range)
utility_num(i) = abs(y' * (eye(itr+1) - (itr+1)^-1 * ones(itr+1,itr+1))* B*Dh*arrayresponse(varphi_range(i),M))^2;
utility_den(i) = sum(abs(B*Dh*arrayresponse(varphi_range(i),M)).^2,1) - (itr+1)^-1 * abs(ones(1,itr+1)*B*Dh*arrayresponse(varphi_range(i),M))^2;
end
utilityfunction = utility_num ./ utility_den;
%Extract the angle estimate
[~,maxind] = max(utilityfunction);
arrayresponse(varphi_range(maxind),M);
%Estimate the amplitude and phase of g
var_amp_g_num = abs(y' * (eye(itr+1) - (itr+1)^-1 * ones(itr+1,itr+1))* B*Dh*arrayresponse(varphi_range(maxind),M))^2;
var_amp_g_den = SNR * (norm(B*Dh*arrayresponse(varphi_range(maxind),M))^2 - (itr+1)^-1 * abs(ones(1,itr+1)*B*Dh*arrayresponse(varphi_range(maxind),M))^2)^2;
var_amp_g_est = var_amp_g_num/var_amp_g_den;
var_phas_g_est = - angle (y' * (eye(itr+1) - (itr+1)^-1 * ones(itr+1,itr+1))* B*Dh*arrayresponse(varphi_range(maxind),M));
g_est = sqrt(var_amp_g_est) * exp(1i*var_phas_g_est) * arrayresponse(varphi_range(maxind),M);
%Estimate the amplitude and phase of d
z = (y - sqrt(SNR)*B*Dh*g_est);
var_amp_d_est = (SNR)^-1 * (itr+1)^-2 * abs (ones(1,itr+1) * (y - sqrt(SNR)*B*Dh*g_est))^2;
var_phas_d_est = angle (ones(1,itr+1) * (y - sqrt(SNR)*B*Dh*g_est));
d_est = sqrt(var_amp_d_est) * exp(1i*var_phas_d_est);
%Estimate the RIS configuration that (approximately) maximizes the SNR
RISconfig = angle(Dh*g_est) - var_phas_d_est * ones (M,1) ;
%Compute the corresponding achievable rate
rate(itr) = log2(1+SNR*abs(exp(-1i*RISconfig).'*Dh*g + d)^2);
%Find an extra RIS configuration to use for pilot transmission
if itr < M-1
%Find the angles in the grid-of-beams that haven't been used
unusedAngles = beamAngles(utilize==false);
%Guess what the channel would be with the different beams
guessOnAngles = Dh*exp(1i * var_phas_g_est)*arrayresponse(unusedAngles,M);
%Find which of the guessed channels matches best with the currently best RIS configuration
closestBeam = abs(exp(-1i*RISconfig).'*guessOnAngles + d_est);
[~,bestUnusedBeam] = max(closestBeam);
%Add a pilot transmission using the new RIS configuration
newAngle = find(unusedAngles(bestUnusedBeam) == beamAngles);
utilize(newAngle) = true;
RIS_directions = beamAngles(utilize);
phase_shifts = angle (Dh_angles*exp(1i * var_phas_g_est)*arrayresponse(RIS_directions,M)) - var_phas_d_est;
RISconfigs = exp (1i * phase_shifts);
B = RISconfigs';
end
end
figure;
hold on; box on; grid on;
plot(1:M-1,capacity*ones(M-1,1),'r:','LineWidth',2)
plot(1:M-1,rate,'k-.','LineWidth',2)
ax = gca;
xlabel('Iterations','Interpreter','latex');
ylabel('Rate','Interpreter','latex');
set(gca,'fontsize',16);
⛳️ 运行结果
🔗 参考文献
[1] 卢兴.无线传感器网络中基于RSSI的节点定位改进算法研究[D].山东科技大学[2024-03-07].
[2] 卢兴.无线传感器网络中基于RSSI的节点定位改进算法研究[D].山东科技大学[2024-03-07].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类