Matlab【光伏预测】基于樽海鞘优化算法SSA优化高斯过程回归GPR实现光伏多输入单输出预测附代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

🔥 内容介绍

摘要:光伏发电作为一种清洁、可再生能源,在全球能源结构转型中扮演着越来越重要的角色。准确预测光伏发电量对于提高电网稳定性、降低运营成本具有重要意义。本文提出了一种基于樽海鞘优化算法 (SSA) 优化高斯过程回归 (GPR) 的光伏多输入单输出预测模型,旨在提高光伏发电量的预测精度。该模型利用 SSA 算法对 GPR 模型的超参数进行优化,并通过多输入数据训练 GPR 模型,最终实现光伏发电量的准确预测。实验结果表明,与传统的 GPR 模型相比,该模型在预测精度方面取得了显著提升,验证了该模型在光伏发电预测中的有效性。

关键词:光伏预测,樽海鞘优化算法,高斯过程回归,多输入单输出

1. 引言

随着全球能源需求的不断增长以及环境保护意识的提高,开发和利用清洁、可再生能源成为了全球共识。光伏发电作为一种重要的可再生能源,近年来得到了快速发展。然而,光伏发电受到天气因素、季节变化等因素的影响,发电量具有随机性、波动性等特点,这给电网调度和管理带来了挑战。因此,准确预测光伏发电量对于提高电网稳定性、降低运营成本具有重要意义。

传统的预测模型,如多元线性回归、支持向量机等,在处理非线性问题时往往面临着精度不足的挑战。而高斯过程回归 (GPR) 作为一种基于概率模型的机器学习方法,具有处理非线性问题的能力,在光伏发电预测领域得到广泛应用。然而,GPR 模型的预测精度取决于超参数的选取,而超参数的优化是一个复杂且耗时的过程。

为了克服传统方法的不足,本文提出了一种基于樽海鞘优化算法 (SSA) 优化高斯过程回归 (GPR) 的光伏多输入单输出预测模型。SSA 算法是一种新型的元启发式优化算法,具有收敛速度快、全局搜索能力强等优点。通过利用 SSA 算法对 GPR 模型的超参数进行优化,可以有效提高模型的预测精度。

2. 理论基础

2.1 高斯过程回归

高斯过程回归 (GPR) 是一种非参数统计模型,它假设目标函数服从高斯过程。高斯过程可以用一个均值函数和一个协方差函数来描述。均值函数表示目标函数的平均值,协方差函数描述目标函数不同点之间的关系。

GPR 模型的预测结果可以通过贝叶斯推断获得。根据训练数据,可以推断出目标函数的后验分布,并利用该分布进行预测。GPR 模型的优点在于它可以提供预测结果的置信区间,方便评估模型的可靠性。

2.2 樽海鞘优化算法

樽海鞘优化算法 (SSA) 是一种模拟樽海鞘群聚行为的元启发式优化算法。樽海鞘是一种海洋生物,它们通过释放黏液形成链状结构,并通过协同运动进行觅食和繁殖。SSA 算法将优化问题转化为寻找最佳樽海鞘群聚位置的问题,并通过模拟樽海鞘的群聚行为来寻找最优解。

SSA 算法主要包含两个阶段:引导阶段和跟随阶段。引导阶段模拟樽海鞘通过释放黏液进行运动,跟随阶段模拟樽海鞘通过跟随前面樽海鞘进行运动。这两个阶段相互交替进行,并最终收敛到最优解。

3. 模型设计

3.1 模型框架

本文提出的光伏多输入单输出预测模型基于 SSA 算法优化 GPR 模型,其框架如图1所示。

图1 光伏预测模型框架图

该模型主要包含以下步骤:

  • 数据预处理: 对光伏发电量数据进行清洗、归一化等预处理操作,为后续模型训练提供高质量数据。

  • SSA 优化 GPR 模型超参数: 利用 SSA 算法对 GPR 模型的超参数进行优化,包括核函数参数、噪声方差等。

  • GPR 模型训练: 使用优化后的超参数训练 GPR 模型,建立光伏发电量预测模型。

  • 光伏发电量预测: 利用训练好的 GPR 模型对未来光伏发电量进行预测。

3.2 超参数优化

GPR 模型的预测精度与超参数的选择密切相关。为了提高模型的预测精度,本文采用 SSA 算法对 GPR 模型的超参数进行优化。SSA 算法的优化目标函数为模型的预测误差,通过优化超参数来最小化预测误差,从而提高模型的预测精度。

实验结果表明,SSA 优化 GPR 模型能够有效提高光伏发电量的预测精度。这是因为 SSA 算法能够对 GPR 模型的超参数进行有效优化,使模型能够更好地拟合光伏发电量数据,从而提高预测精度。

4. 结论

本文提出了一种基于樽海鞘优化算法 (SSA) 优化高斯过程回归 (GPR) 的光伏多输入单输出预测模型。该模型利用 SSA 算法对 GPR 模型的超参数进行优化,并通过多输入数据训练 GPR 模型,最终实现光伏发电量的准确预测。实验结果表明,该模型在预测精度方面取得了显著提升,验证了该模型在光伏发电预测中的有效性。

⛳️ 运行结果

🔗 参考文献

[1] 邓惟绩,肖辉,李金泽,等.基于改进长短期记忆网络和高斯过程回归的光伏功率预测方法[J].低压电器, 2021(008):000.

[2] 赵荣荣,赵忠盖,刘飞.基于k-近邻互信息的发酵过程高斯过程回归建模[J].化工学报, 2019, 70(12):8.DOI:10.11949/0438-1157.20190606.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值