✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
通过仔细研读相关要求,我们需要明确小车大致需要完成两个任务。第一是从起始点逐步移动到目标点,第二 则是在移动到目标点时需要保证小车朝向预定方向。根据网上所找到的资料来看,大部分对两轮小车的控制方法并 没有对小车最后的方向进行限制,即控制小车跑到目标位置即可,显然这并没有完全满足大作业的要求,我们需要 对方法进行完善。 如果要完成大作业中的两个任务,我们有两个选择,第一个是将两个任务合二为一同时完成,即最后到达目标 点的时侯小车朝向也完全正确;第二个是先执行小车移动到目标点的操作,控制其移动至目标点,等到了目标点之 后在进行方向的对准。第一个选择看似方便,但是我对第一个方法进行仿真过后发现它存在很大的问题。小车在运 动过程中的方向可以逐渐收敛于目标方向,但无法到达目标点,即小车的运动被方向限定死了,只能在平行于过目 标点的一条直线上运动。虽然在仿真中恰好可以完成大作业的目标,但是这只是因为起始点和目标点的特殊关系才 能完成,并不能完成大部分其它任意点到任意点的任务,不具有普适性。而第二种方法则将两个任务分开进行,相 对来说可行性更高,普适性也更强,最后通过仿真也证明了第二种分开控制的方法更好,所以最后我选择用第二种 方法来对小车进行控制。 本篇文章分四个部分对小车的运动及控制进行了分析、建模、设计、仿真,证明我的设计能完全满足大作业的 要求,同时也发现了本方法有继续改进和提升的空间。
⛳️ 运行结果
🔗 参考文献
[1] Youssef,M.A,Moftah,等.较高温度下混凝土的一般应力-应变关系曲线[J].钢结构, 2008, 05(No.107):82-83.DOI:CNKI:SUN:GJIG.0.2008-05-043.
[2] 刘金琨.先进PID控制及其MATLAB仿真[电子资源][M].电子工业出版社,2003.
[3] 仇成群,刘成林,沈法华,等.基于Matlab和模糊PID的汽车巡航控制系统设计[J].农业工程学报, 2012, 28(6):197-202.DOI:10.3969/j.issn.1002-6819.2012.06.032.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类