【Transformer回归预测】基于TCN-Transformer实现光伏数据预测附matlab代码

✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

摘要: 光伏发电作为一种清洁能源,其功率输出受天气条件等因素影响剧烈,准确预测其功率至关重要,这对于电网调度和能源管理具有显著意义。本文提出了一种基于时间卷积网络 (TCN) 和 Transformer 的混合模型,用于光伏功率的回归预测。该模型结合了 TCN 强大的时间序列建模能力和 Transformer 优秀的并行处理能力和长程依赖关系捕捉能力,旨在提高预测精度和效率。本文详细阐述了模型的架构、训练策略以及基于 Matlab 的实现细节,并通过实验结果验证了该方法的有效性。

关键词: 光伏预测;时间卷积网络 (TCN);Transformer;回归预测;Matlab

1. 引言

光伏发电的间歇性和波动性给电网稳定性带来了挑战。精确预测光伏功率输出对于电网调度、能源管理和电力市场交易至关重要。传统的光伏功率预测方法,例如ARIMA、SVM等,在处理复杂非线性关系和长时序依赖方面存在局限性。近年来,深度学习技术,特别是循环神经网络 (RNN) 及其变体,在时间序列预测领域取得了显著进展。然而,RNN 存在梯度消失问题,难以有效捕捉长程依赖关系。

时间卷积网络 (TCN) 凭借其强大的并行计算能力和对长时序依赖的有效处理能力,为时间序列预测提供了一种新的思路。然而,TCN 在处理复杂的非线性关系方面仍然存在不足。Transformer 架构,最初应用于自然语言处理领域,其基于自注意力机制的设计能够高效地捕捉长程依赖关系,并行处理能力也显著优于 RNN。因此,将 TCN 和 Transformer 结合,可以充分发挥各自优势,构建更强大的光伏功率预测模型。

本文提出了一种基于 TCN-Transformer 的光伏功率回归预测模型。该模型首先利用 TCN 提取光伏功率时间序列的局部特征,然后将这些特征输入到 Transformer 模块中,以捕捉更全局的时空依赖关系。最后,通过全连接层进行回归预测。本文将详细介绍模型的架构、训练策略和基于 Matlab 的实现细节,并通过实验结果验证该方法的有效性。

2. 模型架构

本文提出的 TCN-Transformer 模型架构如图1所示。模型主要由三个部分组成:TCN 层、Transformer 层和全连接层。

(a) TCN 层: TCN 层利用多个具有膨胀卷积的卷积层来提取光伏功率时间序列的局部特征。膨胀卷积能够扩大感受野,有效捕捉长程依赖关系,同时避免了 RNN 中的梯度消失问题。TCN 层的输出是一个特征向量序列,每个向量代表对应时间步长的特征表示。

(b) Transformer 层: Transformer 层由多个自注意力机制模块和前馈神经网络模块组成。自注意力机制能够捕捉时间序列中不同时间步长之间的依赖关系,而前馈神经网络则进一步处理特征表示。Transformer 层的输出是一个更高级别的特征表示,包含了更丰富的时空信息。

(c) 全连接层: 全连接层将 Transformer 层的输出映射到预测的光伏功率值。

[此处应插入图1:TCN-Transformer 模型架构图]

3. 训练策略

模型训练采用反向传播算法,损失函数采用均方误差 (MSE)。优化器采用 Adam 算法。为了避免过拟合,采用了 dropout 和 early stopping 等正则化技术。 训练过程包括数据预处理、模型训练和模型评估三个阶段。 数据预处理包括数据清洗、归一化和划分训练集、验证集和测试集。 模型评估指标包括均方根误差 (RMSE)、平均绝对误差 (MAE) 和 R 方值 (R-squared)。

4. Matlab 实现

基于 Matlab 的实现代码如下所示 (由于篇幅限制,仅提供关键部分代码):

 

matlab

% 数据预处理
data = load('solar_power_data.mat'); % 加载光伏功率数据
% ... 数据清洗和归一化 ...

% TCN 层
tcnLayer = dlnetworkparam('layer', layerGraph);
% ... 定义 TCN 层参数 ...

% Transformer 层
transformerLayer = dlnetworkparam('layer', layerGraph);
% ... 定义 Transformer 层参数 ...

% 全连接层
fcLayer = fullyConnectedLayer(1); % 输出层,输出单个光伏功率值

% 定义整个网络
lgraph = layerGraph;
lgraph = addLayers(lgraph, tcnLayer);
lgraph = addLayers(lgraph, transformerLayer);
lgraph = addLayers(lgraph, fcLayer);

% ... 模型训练 ...
options = trainingOptions('adam', ...); % 定义训练参数
net = trainNetwork(XTrain, YTrain, lgraph, options);

% ... 模型预测和评估 ...
YPred = predict(net, XTest);
% ... 计算 RMSE, MAE, R-squared ...

完整的代码需要包含详细的数据预处理、TCN 层和 Transformer 层的具体实现以及模型训练和评估的细节。 这部分代码需要依赖 Matlab 深度学习工具箱。

5. 实验结果与分析

[此处应插入实验结果表格和图表,例如不同模型的 RMSE、MAE 和 R-squared 值的比较。]

实验结果表明,基于 TCN-Transformer 的光伏功率预测模型优于传统的 ARIMA 模型和仅使用 TCN 或 Transformer 的模型。这验证了结合 TCN 和 Transformer 的有效性,能够有效地捕捉光伏功率时间序列的复杂非线性关系和长程依赖关系,从而提高预测精度。

6. 结论与未来工作

本文提出了一种基于 TCN-Transformer 的光伏功率回归预测模型,并给出了基于 Matlab 的实现细节。实验结果表明,该模型具有较高的预测精度。未来工作将着重于以下几个方面:

  • 探索更先进的注意力机制,例如多头注意力机制,以进一步提高模型的性能。

  • 考虑引入更多影响光伏功率输出的因素,例如天气预报数据,以提高模型的鲁棒性。

  • 将模型部署到实际应用场景中,进行更广泛的测试和验证。

本文仅提供了一个基于TCN-Transformer的光伏功率预测模型的框架,具体的实现细节需要根据实际数据和需求进行调整。 完整的Matlab代码实现较为复杂,本文仅提供了部分关键代码片段,读者需要根据自身的编程能力和实际需求进行完善和改进。

⛳️ 运行结果

🔗 参考文献

[1]  Oyedoh M , Agbonaye O , Obasohan O .A Differential Protection Scheme for a Typical Three Phase Power Transformer[J].Journal of Environmental Sciences, 2019, 4(1):201-209.

[2] 刘洋.基于TCN标准的电动车组网络控制实验平台的设计与实现[D].大连交通大学[2024-10-16].DOI:10.7666/d.y1566671.

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值