✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
自由空间光通信 (Free-Space Optical, FSO) 作为一种新兴的无线通信技术,凭借其高带宽、低功耗、抗干扰能力强等优势,在军事通信、应急通信、城域网接入等领域展现出广阔的应用前景。 然而,FSO链路易受大气湍流、散射、吸收等因素影响,导致信号衰减和失真,从而降低通信质量。因此,研究合适的调制解调技术,并对其性能进行评估,对于提高FSO系统的可靠性和有效性至关重要。本文将聚焦于自由空间光通信在高斯信道下的OOK (On-Off Keying, 开关键控)、PPM (Pulse Position Modulation, 脉冲位置调制)、DPPM (Differential Pulse Position Modulation, 差分脉冲位置调制) 三种调制方式,深入探讨其调制解调原理,并分析在高斯噪声影响下的误码率性能。
一、调制方式原理
- OOK调制
OOK调制是最简单的调制方式之一,它通过激光器的开和关来分别表示二进制数据"1"和"0"。当需要传输比特"1"时,激光器发射光脉冲;当需要传输比特"0"时,激光器关闭,不发射光脉冲。这种调制方式实现简单,成本低廉,但其功率利用率较低,抗噪声能力较弱。解调端通常采用阈值判决的方式进行信号恢复。
- PPM调制
PPM调制是一种基于时间位置的调制技术。它将一个比特周期划分为 M 个时隙,每个时隙表示一种符号。对于 M 进制的PPM调制,每个符号代表 log<sub>2</sub>(M) 个比特。在传输时,只有其中一个时隙内存在光脉冲,而其他时隙为空。光脉冲所在的时隙位置代表所传输的符号。例如,4-PPM 将一个比特周期分为 4 个时隙,每个时隙对应于二进制数 00, 01, 10, 11。PPM调制相比OOK具有更高的功率利用率,但其需要更精确的同步,且对脉冲展宽较为敏感。
- DPPM调制
DPPM调制是PPM调制的一种变体,它通过相邻符号之间光脉冲位置的差异来传递信息。与PPM不同,DPPM不依赖于绝对的时间基准,而是利用相邻脉冲位置的差值进行解码。例如,在 M-DPPM中,当前脉冲的位置相对于前一个脉冲的位置偏移量决定了所传输的符号。 这种调制方式对同步要求较低,具有更强的抗抖动能力,尤其适用于存在时钟抖动的环境。DPPM的缺点是容易出现错误传播,即一个错误的解码会影响后续的解码。
二、解调方式分析
在高斯信道下,接收到的信号会受到加性高斯白噪声 (Additive White Gaussian Noise, AWGN) 的影响。针对不同的调制方式,需要采用合适的解调方式来尽可能地恢复原始信号。
- OOK解调
OOK解调通常采用阈值检测。接收端首先利用光电探测器将光信号转换为电信号。然后,将电信号与预先设定的阈值进行比较。如果信号幅度高于阈值,则判决为比特"1";如果信号幅度低于阈值,则判决为比特"0"。阈值的选择需要根据噪声水平和信号强度进行优化,以最小化误码率。
- PPM解调
PPM解调的关键在于确定光脉冲所在的时隙位置。接收端将接收到的信号通过积分器或匹配滤波器进行处理,计算每个时隙的能量。选择能量最高的时隙,并将其对应的符号作为解调结果。为了提高解调性能,通常需要进行同步,以确保时隙划分的准确性。
- DPPM解调
DPPM解调首先需要进行差分解码,即计算相邻两个脉冲位置的差值。然后,根据预先定义的编码规则,将差值转换为相应的符号。与PPM解调类似,DPPM解调也需要对接收信号进行处理,例如使用积分器或匹配滤波器。在存在错误传播的情况下,可以采用维特比译码等技术来减轻其影响。
三、高斯信道下误码率分析
误码率 (Bit Error Rate, BER) 是衡量通信系统性能的重要指标,它表示接收到的错误比特数与总传输比特数之比。在高斯信道下,可以通过理论推导来分析各种调制方式的误码率性能。
- OOK误码率
在高斯信道下,OOK的误码率可以近似表示为:
BER<sub>OOK</sub> = Q(√(SNR/2))
其中,Q(x) 是Q函数,定义为 Q(x) = (1/√(2π)) ∫<sub>x</sub><sup>∞</sup> exp(-t<sup>2</sup>/2) dt, SNR是信噪比 (Signal-to-Noise Ratio)。该公式表明,OOK的误码率随着信噪比的增加而降低。
- PPM误码率
M-PPM的误码率在高斯信道下可以近似表示为:
BER<sub>PPM</sub> ≈ (M/2) * Q(√(SNR * log<sub>2</sub>(M)))
其中,M为PPM的阶数。该公式表明,PPM的误码率也随着信噪比的增加而降低。此外,对于相同的信噪比,PPM的阶数越高,误码率越高。 这是因为更高的阶数意味着更小的时隙宽度,从而更容易受到噪声的影响。
- DPPM误码率
DPPM的误码率分析较为复杂,需要考虑错误传播的影响。一种近似的公式如下:
BER<sub>DPPM</sub> ≈ 2 * BER<sub>PPM</sub>
该公式表明,在相同条件下,DPPM的误码率大约是PPM的两倍。这是因为DPPM的差分编码会导致错误传播,使得一个错误的解码影响后续的解码。
四、结论与展望
本文对自由空间光通信在高斯信道下的OOK、PPM、DPPM三种调制方式进行了分析,探讨了其调制解调原理,并给出了在高斯噪声影响下的误码率公式。 结果表明,不同的调制方式具有不同的性能特点。OOK实现简单,但功率利用率低,抗噪声能力弱;PPM具有更高的功率利用率,但对同步要求较高;DPPM对同步要求较低,但容易出现错误传播。
在实际应用中,需要根据具体的通信环境和性能要求选择合适的调制方式。例如,在链路质量较好、同步精度较高的情况下,可以选择PPM调制;而在链路质量较差、存在时钟抖动的情况下,可以选择DPPM调制。此外,还可以采用一些技术手段来提高FSO系统的性能,例如:
- 信道编码技术:
采用信道编码技术可以提高系统的抗噪声能力,降低误码率。常用的信道编码方式包括前向纠错码 (Forward Error Correction, FEC) 和交织码等。
- 自适应调制技术:
根据信道状况动态调整调制方式,以实现最佳的性能。例如,在信道状况较好时采用高阶调制方式,在信道状况较差时采用低阶调制方式。
- 分集技术:
采用分集技术可以提高系统的抗衰落能力。常用的分集技术包括空间分集、时间分集和频率分集等。
随着FSO技术的不断发展,相信未来会有更多先进的调制解调技术被应用于FSO系统中,从而进一步提高其性能和可靠性。未来的研究方向可以包括:
- 多进制调制:
研究更高阶的调制方式,例如QAM (Quadrature Amplitude Modulation),以提高频谱利用率。
- 自适应均衡:
针对大气湍流引起的信道畸变,研究自适应均衡算法,以改善信号质量。
- 量子通信:
将量子通信技术与FSO技术结合,实现更安全的通信。
⛳️ 运行结果
🔗 参考文献
[1] 赵明宇.紫外光通信大气传输特性和调制技术研究[D].北京邮电大学,2013.
[2] 邓天平.自由空间光通信系统关键技术研究[D].华中科技大学[2025-03-08].DOI:10.7666/d.d093139.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇