大学物理复习6->刚体运动学(转动定律+转动惯量)
A.角度(位移)、角速度(速度)、角加速度(加速度)的关系式↓:
B.刚体定轴转动例题实战↓:
A.力矩部分(分成两种情况:力在转动平面内;力在转动平面之外)
a.力在转动平面内(示意图见下↓):只需要进行一次分解
注:需要将力在平面内分解成与位置矢量平行和垂直的方向,只有垂直的方向才有力矩
b.力在空间中(示意图见下↓)需要进行两次分解
注:需要先将力分解成与转动轴垂直和平行两个方向的分力,平行的力没有转动效果(相当于在门底抬门,或者在门上压门,起不到开门的效果),垂直的力才有转动的效果(垂直的力在转动平面内,相当于把情况转化成了a情况)再根据a情况分解即可
c.两种情况的推导分析↓:
B.角动量部分(具体推导见下图↓)
C.转动惯量(由角动量部分推导而来↓)
a.转动惯量的表达式↓
b.求解各种几何体的转动惯量**(解题步骤:先列出元转动惯量的表达式dj,再利用线密度面密度等参数表达dm的微分,最后等式两边同时进行积分即可)**
①圆环的转动惯量↓
②圆盘的转动惯量↓
③细棒的转动惯量↓(前者为轴在中间的转动惯量,后者为轴在左侧的转动惯量)
D.转动定律的实际应用(与求转动惯量一样,都是表达出元物理量,转换微元的形式,再积分求解)