概率统计·多维随机变量及其分布【二维随机变量、边缘分布、条件分布】

二维随机变量

在这里插入图片描述

(x,y)的左下部分

离散型

在这里插入图片描述

与一维不一样的是,二维离散在分布律中会写出概率为0的项

分布函数

在这里插入图片描述

就是将相应区域内的概率加起来

连续型

在这里插入图片描述

规范性还是要留意一下,有时会用到,用来求一些f(x)中的未知数k

在这里插入图片描述
在这里插入图片描述

建议仔细思考一下,为什么第(1)问的二重积分上限不是+∞
因为二重积分的定义,F(x,y)=P{x≤X,y≤Y}。所以上限在这里已经确定了(2022.10.31,经过知识巩固后,发现细节)

注意二重积分的上下限,不能直接将f(u,v)代入2e-(2x+y),因为这个是在x>0,y>0的情况下的,所有要先变上下限
注意、注意、再注意。老师说考试的时候经常会错的😭😭😭

在这里插入图片描述

二重积分的积分方法还会吗😇
第(2)问,当多维分布函数概率出现时,可以想到用二重积分,在这个区域内的面积积分(2022.10.31期中复习)

在这里插入图片描述

第一问用了规范性

在这里插入图片描述

第2问同样要注意,不能直接将f(x,y)代入公式,先变上下限

边缘分布

在这里插入图片描述

就是默认一个量趋向正无穷,另一个变量可以改变
注意:Fx关于x的边缘分布函数右下角有x记号

离散型

在这里插入图片描述
也比较好理解,固定了一个变量x或y,另一个量从第一个i=1或者j=1开始到最后一个(趋向正无穷)
相当于将二维变成一维

分布函数

在这里插入图片描述
固定xi,就是关于x的边缘分布函数
将在xi条件下的所有y相加,极限相当于xi的概率

在这里插入图片描述

连续型

在这里插入图片描述
这一页还是好好看看吧,虽然不难,但是好像也不是理解得非常透彻
注意概率密度
好好看看这一页吧

均匀分布

在这里插入图片描述

均匀分布——1/面积
不用特别知道那个3维的图

在这里插入图片描述

前面都忘记说了,二维首先要画图🥐🥐🥐
这个第一问用一下规范性即可,没什么好说的

在这里插入图片描述
在这里插入图片描述

边缘分布的上下限就用老师上课那样的方法(图上这种),fx固定x观察y的范围,fy固定y观察x的取值范围
这2个求边缘密度的题,虽然理解起来很简单,但是还是好好看一下,因为到自己实际写起来时,可能会出现意想不到的问题

正态分布

在这里插入图片描述
在这里插入图片描述
这个公式应该是不用记住的(毕竟有那么长,而且还复杂)
在这里插入图片描述
我个人估计考试考这个知识点的概率不是很大,因为这个知识点还是复杂的,不好考察边缘分布,通过边缘分布也不能确定联合分布

条件分布

离散型

在这里插入图片描述
注意划线部分的这种写法
简而言之——联合分布/边缘分布

性质

在这里插入图片描述
经典性质了属于是

在这里插入图片描述

注意范围

在这里插入图片描述
Y的边缘分布—— 因为联合分布实际上和m没有关系,所以∑就是单纯的求和,故最终结果的系数是(n-1)【从1——n-1】

X的边缘分布—— 是等比数列前n项的和

在这里插入图片描述
离散型最后结果可能与X和Y有关

连续型

在这里插入图片描述
注意划线部分的写法

在这里插入图片描述
一些基本关系,和一维的类似

在这里插入图片描述
注意这里需要2个定义域,第一个是为了分母的,第2个是为了条件概率的(要写出2个才不会被扣分)

在这里插入图片描述
在这里插入图片描述
这里的fX(x)满足均匀分布(固定了X,y->+∞)【还是好好理解一下吧💦💦💦】
在这里插入图片描述
联合密度——条件*边缘 (注意定义域)
好好看一下fY(y)的求法

练习

在这里插入图片描述
在这里插入图片描述
虽然这道题看上去 很 很 很 简单,但是我自己第一次做的时候,对于第1问的二重积分还不是很会积💢💢💢,因为x,y的定义域都是常数,而不是其中一个是另一个的相关的定义域

在这里插入图片描述
在这里插入图片描述

这道题看上去好像非常简单,但是我第一次做得时候真的分不清FX和fX的关系
所以仔细认真写写,切忌眼高手低
现在看来真的非常简单基础,心已累☕☕☕(2022.10.31期中复习,with listening to "Speak Softly Love")
在这里插入图片描述
在这里插入图片描述

我的建议是画个图,清晰明了(自己第一次做,然后错了🧤🧤🧤)

在这里插入图片描述
在这里插入图片描述

原来那个答案应该是错了,现在这个是正确的
第2问可以好好看看 不太用了,现在感觉很简单了(2022.10.31)

在这里插入图片描述

条件概率要注意在前面加上y的取值范围(y作分母时),x的取值范围(x作分母时)
值得看看,对于知识的应用加深

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值