二维随机变量
(x,y)的左下部分
离散型
与一维不一样的是,二维离散在分布律中会写出概率为0的项
分布函数
就是将相应区域内的概率加起来
连续型
规范性还是要留意一下,有时会用到,用来求一些f(x)中的未知数k
例
建议仔细思考一下,为什么第(1)问的二重积分上限不是+∞
因为二重积分的定义,F(x,y)=P{x≤X,y≤Y}。所以上限在这里已经确定了
(2022.10.31,经过知识巩固后,发现细节)
注意二重积分的上下限,不能直接将f(u,v)代入2e-(2x+y),因为这个是在x>0,y>0的情况下的,所有要先变上下限
注意、注意、再注意。老师说考试的时候经常会错的😭😭😭
二重积分的积分方法还会吗😇
第(2)问,当多维分布函数概率出现时,可以想到用二重积分,在这个区域内的面积积分(2022.10.31期中复习)
第一问用了规范性
第2问同样要注意,不能直接将f(x,y)代入公式,先变上下限
边缘分布
就是默认一个量趋向正无穷,另一个变量可以改变
注意:Fx关于x的边缘分布函数右下角有x记号
离散型
也比较好理解,固定了一个变量x或y,另一个量从第一个i=1或者j=1开始到最后一个(趋向正无穷)
相当于将二维变成一维
分布函数
固定xi,就是关于x的边缘分布函数
将在xi条件下的所有y相加,极限相当于xi的概率
连续型
这一页还是好好看看吧,虽然不难,但是好像也不是理解得非常透彻
注意概率密度
好好看看这一页吧
均匀分布
均匀分布——1/面积
不用特别知道那个3维的图
例
前面都忘记说了,二维首先要画图🥐🥐🥐
这个第一问用一下规范性即可,没什么好说的
边缘分布的上下限就用老师上课那样的方法(图上这种),fx固定x观察y的范围,fy固定y观察x的取值范围
这2个求边缘密度的题,虽然理解起来很简单,但是还是好好看一下,因为到自己实际写起来时,可能会出现意想不到的问题
正态分布
这个公式应该是不用记住的(毕竟有那么长,而且还复杂)
我个人估计考试考这个知识点的概率不是很大,因为这个知识点还是复杂的,不好考察边缘分布,通过边缘分布也不能确定联合分布
条件分布
离散型
注意划线部分的这种写法
简而言之——联合分布/边缘分布
性质
经典性质了属于是
例
注意范围
Y的边缘分布—— 因为联合分布实际上和m没有关系,所以∑就是单纯的求和,故最终结果的系数是(n-1)【从1——n-1】
X的边缘分布—— 是等比数列前n项的和
离散型最后结果可能与X和Y有关
连续型
注意划线部分的写法
一些基本关系,和一维的类似
例
注意这里需要2个定义域,第一个是为了分母的,第2个是为了条件概率的(要写出2个才不会被扣分)
这里的fX(x)满足均匀分布(固定了X,y->+∞)【还是好好理解一下吧💦💦💦】
联合密度——条件*边缘 (注意定义域)
好好看一下fY(y)的求法
练习
虽然这道题看上去 很 很 很 简单,但是我自己第一次做的时候,对于第1问的二重积分还不是很会积💢💢💢,因为x,y的定义域都是常数,而不是其中一个是另一个的相关的定义域
这道题看上去好像非常简单,但是我第一次做得时候真的分不清FX和fX的关系
所以仔细认真写写,切忌眼高手低
现在看来真的非常简单基础,心已累☕☕☕(2022.10.31期中复习,with listening to "Speak Softly Love")
我的建议是画个图,清晰明了(自己第一次做,然后错了🧤🧤🧤)
原来那个答案应该是错了,现在这个是正确的
第2问可以好好看看 不太用了,现在感觉很简单了(2022.10.31)
条件概率要注意在前面加上y的取值范围(y作分母时),x的取值范围(x作分母时)
值得看看,对于知识的应用加深